Skip to main content
Log in

Excess and saturated D-optimal designs for the rational model

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

For a rational two-dimensional nonlinear in parameters model used in analytical chemistry, we investigate how homothetic transformations of the design space affect the number of support points in the optimal designs. We show that there exist two types of optimal designs: a saturated design (i.e. a design with the number of support points which is equal to the number of parameters) and an excess design (i.e. a design with the number of support points which is greater than the number of parameters). The optimal saturated designs are constructed explicitly. Numerical methods for constructing optimal excess designs are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atkinson AC, Fedorov VV (1975a) The designs of experiments for discriminating between two rival models. Biometrika 62:57–70

    Article  MathSciNet  Google Scholar 

  • Atkinson AC, Fedorov VV (1975b) Optimal design: experiments for discriminating between several models. Biometrika 62:289–303

    MathSciNet  MATH  Google Scholar 

  • Atkinson AC, Donev AN, Tobias RD (2007) Optimum experimental designs, with SAS. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Ayen R, Peters MS (1962) Catalytic reduction of nitric oxide. Ind Eng Chem Process Des 1(3):204–207

    Article  Google Scholar 

  • Box JEP, Hunter WG (1965a) The experimental study of physical mechanisms. Technometrics 7:23–42

    Article  Google Scholar 

  • Box JEP, Hunter WG (1965b) Sequential design of experiments for nonlinear models. In: Proceedings of IBM scientific computing symposium on statistics, pp 113–137

  • Chaloner K, Verdinelli I (1995) Bayesian experimental design: a review. Stat Sci 10:273–304

    Article  MathSciNet  Google Scholar 

  • Chernoff H (1953) Locally optimal designs for estimating parameters. Ann Math Stat 24:586–602

    Article  MathSciNet  Google Scholar 

  • de la Garza A (1954) Spacing of information in polynomial regression. Ann Math Stat 25:123–130

    Article  MathSciNet  Google Scholar 

  • Dette H (1997) Designing experiments with respect to “standardized” optimality criteria. J R Stat Soc 59:97–110

    Article  MathSciNet  Google Scholar 

  • Dette H, Melas VB (2011) A note on the de la Garza phenomenon for locally optimal designs. Ann Stat 39(2):1266–1281

    Article  MathSciNet  Google Scholar 

  • Ermakov SM, Kulikov DV, Leora SN (2017) Towards the analysis of the simulated annealing method in the multiextremal case. Vestn St. Petersb Univ Math 50(2):132–137

    Article  Google Scholar 

  • Fedorov VV (1972) Theory of optimal experiment. Academic Press, New York

    Google Scholar 

  • Filipe J, Adams FG (1987) The estimation of the Cobb–Douglas function: a retrospective view. East Econ J 31(3):427–445

    Google Scholar 

  • Grigoriev YD, Melas VB, Shpilev PV (2017) Excess of locally \(D\)-optimal designs and homothetic transformations. Vestn St. Petersb Univ Math 50(4):329–336

    Article  Google Scholar 

  • Grigoriev YD, Melas VB, Shpilev PV (2018) Excess of locally \(D\)-optimal designs for Cobb–Douglas model. Stat Pap 59(4):1425–1439

    Article  MathSciNet  Google Scholar 

  • Kiefer J (1974) General equivalence theory for optimum designs (approximate theory). Ann Stat 2:849–879

    Article  MathSciNet  Google Scholar 

  • Laible JR (1959) The kinetics of the catalytic dehydration of certain tertiary and long chain primary alcohols. University of Wisconsin, Microfilmed Ph.D. Thesis, Madison

  • Melas VB (2006) Functional approach to optimal experimental design. Springer, New York

    MATH  Google Scholar 

  • Pukelsheim F (2006) Optimal design of experiments. SIAM, Philadelphia

    Book  Google Scholar 

  • Pukelsheim F, Rieder S (1992) Efficient rounding of approximate designs. Biometrika 79:763–770

    Article  MathSciNet  Google Scholar 

  • Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley, New York

    Book  Google Scholar 

  • Whittle P (1973) Some general points in the theory and construction of \(D\)-optimal experimental design. J R Stat Soc B 35:123–130

    MATH  Google Scholar 

  • Yang M (2010) On the de la Garza phenomenon. Ann Stat 38:2499–2524

    Article  MathSciNet  Google Scholar 

  • Yang M, Stufken J (2009) Support points of locally optimal designs for nonlinear models with two parameters. Ann Stat 37:518–541

    Article  MathSciNet  Google Scholar 

  • Yang M, Stufken J (2012) Identifying locally optimal designs for nonlinear models: a simple extension with profound consequences. Ann Stat 40(3):1665–1681

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Shpilev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by Russian Foundation for Basic Research (Project Nos. 17-01-00267-a, 20-01-00096-a).

Appendix

Appendix

Throughout this section without losing generality, we can assume that \(\gamma =1\). Also, due to the fact that the D-optimal design for model (3.1) doesn’t depend on the parameter \(\theta _0\), we put \(\theta _0\equiv 1.\) To prove Theorem 2 we need to establish the following lemma first:

Lemma 1

A saturated D-optimal design for model (3.1) is concentrated at points

$$\begin{aligned} \{A=( b_1/(2+b_1\theta _1),0), \ B=(b_1, 0), \ C=(\alpha _1, \alpha _2) \}, \ \alpha _i \in (0,1] \end{aligned}$$
(6.1)

where the point C coincides with one of three points: \((b_1, (1+b_1\theta _1)/\theta _2)\), \((b_1, b_2)\), \(((1+b_2\theta _2)/\theta _1, b_2)\).

Proof of Lemma 1

According to Theorem 1 a design \(\xi \) is D-optimal for model (3.1) if it satisfies the equation

$$\begin{aligned} \max _{(x_1,x_2)\in {\mathcal {X}}}d((x_1,x_2),\xi )=3,&\\ \hbox {where}\ d((x_1,x_2),\xi )=&f^T((x_1,x_2))M^{-1}(\xi )f((x_1,x_2)). \end{aligned}$$

For model (3.1) the function \(d((x_1,x_2),\xi )\) has a form:

$$\begin{aligned} d((x_1,x_2),\xi )=\frac{x_1^2(x_1^2a_1+x_1x_2a_2+x_2^2a_3+x_1a_4 +x_2a_5+a_6)}{(x_1\theta _1+x_2\theta _2+1)^4}, \end{aligned}$$

where \(a_i\) are coefficients depending on \(\theta _i\) and elements of the matrix \(M^{-1}(\xi )\). The analysis of this function shows that it has no more than 4 maxima at points

$$\begin{aligned}&\{\breve{A}=( \alpha _1,0), \ B=(b_1, 0), \ \breve{C}=(b_1, \beta _1),\ \breve{D}=(\alpha _2, \beta _2 ) \},\nonumber \\&\quad \alpha _1,\alpha _2\in (0,b_1], \ \beta _1,\beta _2\in (0,b_2]. \end{aligned}$$
(6.2)

Indeed, for any given non-singular design \(\xi \) and fixed \(x_1=x_1^{*}\in (0,b_1]\) the function \(d((x_1^{*},x_2),\xi )\) has no more than two maxima at the point \(x_2=0\) and at point \(x_2=x_2^{*}\in (0,b_2]\) on the interval \([0,b_2]\). On the other hand, for fixed \(x_2=x_2^{*}\in [0,b_2]\) the function \(d((x_1,x_2^{*}),\xi )\) has also no more than two maxima at the point \(x_1=b_1\) and at the point \(x_1=x_1^{*}\in (0,b_1)\) on the interval \([0,b_1].\) This immediately implies that the function \(d((x_1,x_2),\xi )\) has maxima at points of the form (6.2). We have to show now that the number of global maxima is less than or equal to 4. To do this, we prove that the function \(d((x_1,x_2),\xi )\) cannot have two global maxima at points of the form \(\breve{D}\) when \(\alpha _2<b_1,\ \beta _2<b_2\). We prove it by reductio ad absurdum. Let

$$\begin{aligned} \max _{x_1,x_2}d((x_1,x_2),\ \xi )=d(X^{*}_1,\ \xi )=d(X^{*}_2,\ \xi ),\ \\ X^{*}_i=(x^{*}_{i1},x^{*}_{i2})\in [0,b_1)\times [0,b_2),\ i=1,2. \end{aligned}$$

Consider the line \(x_2=ax_1+b\) that passes through the points \(X^{*}_i\), \(i=1,2.\) We have

$$\begin{aligned} \max _{x_1}d((x_1,ax_1+b),\ \xi )=d((x^{*}_{11},ax^{*}_{11}+b),\ \xi )=d((x^{*}_{21},ax^{*}_{21}+b),\ \xi ). \end{aligned}$$

After the appropriate replacements, we obtain

$$\begin{aligned} d((x_1,ax_1+b),\xi )= \frac{x_1^2({\widetilde{a}}x_1^2+{\widetilde{b}}x_1+{\widetilde{c}}_1)}{(x_1+ {\widetilde{c}}_2)^4}. \end{aligned}$$
(6.3)

Note that the function \((x_1+{\widetilde{c}}_2)^{-4}\) is bounded and strictly increasing (or decreasing) on the interval \([0,b_1]\). On the other hand, the function \(x_1^2({\widetilde{a}}x_1^2+{\widetilde{b}}x_1+{\widetilde{c}})\) has no more than 2 global maxima on the interval \([0,b_1]\) and one of them has to be located at the point \(x_1=b_1\). It follows from this that the function in (6.3) has no more than 2 global maxima at the points \(x_1=b_1\) and \(x_1=x^{*}_1\in (0,b_1)\) on the interval \([0,b_1]\). Thus, we have obtained a contradiction. Therefore, we have proved that the saturated D-optimal design is concentrated at points

$$\begin{aligned} \text{ supp }(\xi )= & {} \{\breve{A}=(\alpha _1, 0), \ B=(b_1,0),\ \breve{D}=(\alpha _2, \beta _1)\}, \\&\alpha _1 \in (0,b_1),\ \alpha _2 \in (0,b_1],\ \beta _1 \in (0,b_2]. \end{aligned}$$

Now we have to consider all possible combinations of sets of parameter’s values \(\{\alpha _1,\alpha _2,\beta _1\}\) to show that any saturated D-optimal design is concentrated at points (6.1). Since \(0<\alpha _1<b_1\) we have only 4 combinations: \(\{0<\alpha _1<b_1, \alpha _2=b_1, 0<\beta _1<b_2\}\), \(\{0<\alpha _1<b_1, \alpha _2=b_1, \beta _1=b_2\}\), \(\{0<\alpha _1<b_1, 0<\alpha _2<b_1, \beta _1=b_2\}\), \(\{0<\alpha _1<b_1, 0<\alpha _2<b_1, 0<\beta _1<b_2\}\). By Theorem 1 any saturated D-optimal design \(\xi ^*\) must satisfy the conditions:

$$\begin{aligned} \max _{(x_1,x_2)\in {\mathcal {X}}}d((x_1,x_2),\xi ^*)=d((t_{i1},t_{i2}),\xi ^*)=3,\ \forall \ (t_{i1},t_{i2}) \in \text{ supp }(\xi ^*). \end{aligned}$$

This implies that if \((t_{i1},t_{i2})\) is an inner point of the design space \({\mathcal {X}}\) then it satisfies the system of equations:

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \frac{\partial d((x_1,x_2),\xi ^*)}{\partial x_1}\Bigr |_{x_1=t_{i1},x_2=t_{i2}}=0,\\ \displaystyle \frac{\partial d((x_1,x_2),\xi ^*)}{\partial x_2}\Bigr |_{x_1=t_{i1}, x_2=t_{i2}}=0.\\ \end{array} \right. \end{aligned}$$

Thus, for our four combinations we have four different systems of corresponding equations. Since

$$\begin{aligned} \frac{\partial d((x_1,x_2),{\overline{\xi }})}{\partial x_1}\Bigr |_{x_1=\alpha _1,x_2=0}=0 \Rightarrow -b_1+(\theta _1b_1+2)\alpha _1=0 \Rightarrow \alpha _1=\frac{b_1}{\theta _1b_1+2} \end{aligned}$$

we immediately obtain that any saturated D-optimal design is concentrated at points (6.1). Note that first 3 combinations give the support points of designs (3.4), (3.5), (3.6) and for the last one (\(\{0<\alpha _2<1, 0<\beta _1<1\}\)) there is no solution:

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \frac{\partial d((x_1,x_2),\xi ^*)}{\partial x_1}\Bigr |_{x_1=\alpha _1,x_2=0}=0\\ \displaystyle \frac{\partial d((x_1,x_2),\xi ^*)}{\partial x_1}\Bigr |_{x_1=\alpha _2, x_2=\beta _1}=0\\ \displaystyle \frac{\partial d((x_1,x_2),\xi ^*)}{\partial x_2}\Bigr |_{x_1=\alpha _2, x_2=\beta _1}=0\\ \end{array} \right. \Rightarrow \left\{ \begin{array}{l} \displaystyle -b_1+(\theta _1b_1+2)\alpha _1=0 \\ \displaystyle \alpha _2\theta _1-\beta _1\theta _2+1=0\\ \displaystyle \alpha _2\theta _1-\beta _1\theta _2-1=0\\ \end{array} \right. \end{aligned}$$

Lemma 1 is proved. \(\square \)

Proof of Theorem 2

Without losing generality, we can assume that \(b_1=b_2=1\).

Fig. 9
figure 9

The behavior of the function \(d((t_1,t_2),{\bar{\xi }}_1^*)\) when \(\theta _1=1,\theta _2=3\), \({\mathcal {X}}=[0,1]\times [0,1]\) for the case (3.4) from Theorem 2

Optimality of designs (3.4)–(3.6) is verified directly by Theorem 1. For example, in case (a) for the design \({\bar{\xi }}_1^*\) in form (3.4) (under our assumption) we have

$$\begin{aligned} {\bar{\xi }}_1^*= & {} \left( \begin{array}{ccc} (1/(2+\theta _1),0)&{} (1, 0)&{} (1, (1+\theta _1)/\theta _2)\\ 1/3&{}1/3&{}1/3 \end{array}\right) , \ \theta _2\ge \theta _1+1, \\ d((t_1,t_2),{\bar{\xi }}_1^*)= & {} \frac{3\left( 1+\theta _1\right) ^2 t_1^2}{(1+\theta _1t_1+\theta _2t_2)^4}\sum _{0\le i+j\le 2}a_{ij}t_1^it_2^j, \\ a_{20}= & {} \theta _1^2+4\theta _1+20, \quad a_{11} = -2\theta _1\theta _2-4\theta _2, \quad a_{02}=17\theta _2^2, \\ a_{10}= & {} -2\theta _1-36, \quad a_{01} = 2\theta _2, \\ a_{00}= & {} 17. \end{aligned}$$

There are two stationary points of the function \(d((t_1,t_2),{\bar{\xi }}_1^*)\) on \([0,1]\times [0,1]:\)

$$\begin{aligned} Q_1= & {} \Bigl (\frac{2}{\theta _1+3}, \frac{\theta _1+1}{\theta _2(\theta _1+3)} \Bigr ), \quad Q_2=\Bigl (\frac{6}{\theta _1+7}, \frac{\theta _1+1}{\theta _2(\theta _1+7)} \Bigr ). \end{aligned}$$
(6.4)

The function \(d((t_1,t_2),{\bar{\xi }}_1^*)\) has the following values at these points:

$$\begin{aligned} d(Q_1,{\bar{\xi }}_1^*)=\frac{3}{2}, \quad d(Q_2,{\bar{\xi }}_1^*)=\frac{81}{64}. \end{aligned}$$
(6.5)

The Hessian matrix of this function is

$$\begin{aligned} H =\frac{\partial ^2}{\partial t_i\partial t_j}d((t_1,t_2),{\bar{\xi }}_1^*)\in R^{2\times 2}. \end{aligned}$$

Direct calculations show that for eigenvalues \(\mu _{1,2}(Q_1)\) of the matrix H at the point \(Q_1\) the inequalities \(\mu _1(Q_1)>0\) and \(\mu _2(Q_2)<0\) hold. Thus, \(Q_1\) is a saddle point. On the other hand, for the point \(Q_2\) the inequalities \(\mu _1(Q_1)>0\) and \(\mu _2(Q_2)>0\) hold and this entails that \(Q_2\) is a minimum point.

Since there are no stationary points \(Q_i\) of the function \(d((t_1,t_2),{\bar{\xi }}_1^*)\) on \([0,1]\times [0,1]\) such that \(d(Q_i, ,{\bar{\xi }}_1^*)\le 3\) this function reaches its maxima at boundary points. Since \(d((0,t_2),{\bar{\xi }}_1^*)\equiv 0\) we have only four possible candidates:

$$\begin{aligned} \{\breve{A}=( \alpha _1,0), \ B=(1, 0), \ \breve{C}=(1, \beta _1),\ D=(1, 1 ) \}, \ \alpha _1,\beta _1 \in (0,1). \end{aligned}$$

For the design \({\bar{\xi }}_1^*\) with \(\breve{A}=(( 1/(2+\theta _1),0),\ \breve{C}=(1, (1+\theta _1)/\theta _2))\) we have

$$\begin{aligned} d(\breve{A},{\bar{\xi }}_1^*)=d(B,{\bar{\xi }}_1^*)=d(\breve{C},{\bar{\xi }}_1^*)=3 \end{aligned}$$

and

$$\begin{aligned} d(D,{\bar{\xi }}_1^*)=\frac{3(\theta _1+1)^2(\theta _1^2+(-2\theta _2+2) \theta _1+17\theta _2^2-2\theta _2+1)}{(\theta _1+\theta _2+1)^4}. \end{aligned}$$

Note that under fixed \(\theta _1\) this function decreases by \(\theta _2\) on the interval \([\theta _1+1,\infty ).\) Indeed,

$$\begin{aligned} \frac{\partial d(D,{\bar{\xi }}_1^*)}{\partial \theta _2}=-\frac{6(3\theta _1-17\theta _2+3)(\theta _1+1)^2(\theta _1-\theta _2+1)}{(\theta _1+\theta _2+1)^5} \le 0,\ \ \theta _2\in [\theta _1+1,\infty ). \end{aligned}$$

Since for case (a) the inequality \(\theta _2\ge \theta _1+1\) holds, we have:

$$\begin{aligned} d(D,{\bar{\xi }}_1^*)\le d(D,{\bar{\xi }}_1^*)\Bigr |_{\theta _2=\theta _1+1}=3. \end{aligned}$$

Thus, by Theorem 1 the design in (3.4) for case (a) is D-optimal. The remaining cases are verified in a similar way.

The behavior of the function \(d((t_1,t_2),{\bar{\xi }}_1^*)\) for \(\theta _1=1,\theta _2=3\), \({\mathcal {X}}=[0,1]\times [0,1]\) is depicted in Fig. 9.

Theorem 2 is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, Y.D., Melas, V.B. & Shpilev, P.V. Excess and saturated D-optimal designs for the rational model. Stat Papers 62, 1387–1405 (2021). https://doi.org/10.1007/s00362-019-01140-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01140-9

Keywords

Navigation