Skip to main content
Log in

Ridge-type shrinkage estimators in generalized linear models with an application to prostate cancer data

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper is concerned with the estimation of the regression coefficients for the generalized linear models in the situation where a multicollinear issue exists and when it is suspected that some of the regression coefficients may be restricted to a linear subspace. Accordingly, as a solution to this issue, we propose a new Stein-type shrinkage ridge estimation approach. We provide the analytic expressions for the asymptotic biases and risks of the proposed estimators and investigate their relative performance with respect to the unrestricted ridge regression estimator. Monte-Carlo simulation studies are conducted to appraise the performance of the underlying estimators in terms of their simulated relative efficiencies. It is clear from both the analytical results and the simulation study that the Stein-type shrinkage ridge estimators dominate the usual ridge regression estimator in the entire parameter space. Finally an empirical application is provided where prostate cancer data is analyzed to show the practical usefulness of the suggested approach. Based on the results from the different parts of this paper, we find that the new method developed would be useful for the practitioners in various research areas such as economics, insurance data and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and extension of the maximum likelihood principle. In: Second international symposium on information theory, pp 267–281

  • Algamal ZY, Asar Y (2018) Liu-type estimator for the gamma regression model. Commun Stat-Simul Comput. https://doi.org/10.1080/03610918.2018.1510525

  • Amin M, Qasim M, Amanullah M, Afzal S (2017) Performance of some ridge estimators for the gamma regression model. Stat Pap. https://doi.org/10.1007/s00362-017-0971-2

  • Amini M, Roozbeh M (2015) Optimal partial ridge estimation in restricted semiparametric regression models. J Multivar Anal 136:26–40

    Article  MathSciNet  Google Scholar 

  • Arashi M, Tabatabaey SMM, Hassanzadeh Bashtian M (2014) Shrinkage ridge estimators in linear regression. Commun Stat-Simul Comput 43:871–904

    Article  MathSciNet  Google Scholar 

  • Asar Y (2017) Some new methods to solve multicollinearity in logistic regression. Commun Stat-Simul Comput 46(4):2576–2586

    Article  MathSciNet  Google Scholar 

  • Asar Y (2018) Liu-type Negative Binomial Regression: a comparison of recent estimators and applications. In: Trends and perspectives in linear statistical inference. Springer, Cham, pp 23–39

  • Asar Y, Genc A (2018) A new two-parameter estimator for the poisson regression model. Iran J Sci Technol Trans A 42:793–803

    Article  MathSciNet  Google Scholar 

  • Asar Y, Ahmed S E, Yuzbasi B (2019) Efficient and improved estimation strategy in zero-inflated poisson regression models. In: International conference on management science and engineering management. Springer, Cham, pp 329–342. https://doi.org/10.1007/978-3-319-93351-1

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for non-orthogonal problems. Technometrics 12:55–67

    Article  Google Scholar 

  • Hoerl AE, Kennard RW, Baldwin KF (1975) Ridge regression: some simulation. Commun Stat-Theory Methods 4:105–123

    MATH  Google Scholar 

  • Hossain S, Ahmed SE, Doksum KA (2015) Shrinkage, pretest, and penalty estimators in generalized linear models. Stat Methodol 24:52–68

    Article  MathSciNet  Google Scholar 

  • Judge GG, Bock ME (1978) The statistical implications of pre-test and stein-rule estimators in econometrics. North Holland Publishing Company, Amsterdam

    MATH  Google Scholar 

  • Kaciranlar S, Dawoud I (2017) On the performance of the poisson and the negative binomial ridge predictors. J Stat Comput Simul 1–20

  • Khuri AI (2010) Linear model methodology. Chapman & Hall, Boca Raton

    MATH  Google Scholar 

  • Kiefer NM, Skoog GR (1984) Local asymptotic specification error analysis. Econometrica 52:873–885

    Article  MathSciNet  Google Scholar 

  • Lisawadi S, Ali Shah MK, Ahmed SE (2016) Model selection and post estimation based on a pretest for logistic regression models. J Stat Comput Simul 86(17):3495–3511

    Article  MathSciNet  Google Scholar 

  • Mansson K, Shukur BMG (2010) On ridge parameters in logistic regression. Commun Stat-Theory Methods 40(18):3366–3381

    Article  MathSciNet  Google Scholar 

  • McDonald GC, Galarneau DI (1975) A monte carlo evaluation of ridge-type estimators. J Am Stat Assoc 70:407–16

    Article  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser A 135(3):370–84

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Roozbeh M (2018) Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion. Comput Stat Data Anal 117:45–61

    Article  MathSciNet  Google Scholar 

  • Saleh AME, Kibria BG (2011) On some ridge regression estimators: a nonparametric approach. J Nonparametr Stat 23:819–851

    Article  MathSciNet  Google Scholar 

  • Saleh AME, Kibria BG (2013) Improved ridge regression estimators for the logistic regression model. Comput Stat 28(6):2519–2558

    Article  MathSciNet  Google Scholar 

  • Schaefer RL, Roi LD, Wolfe RA (1984) A ridge logistic estimator. Commun Stat-Theory Methods 13:99–113

    Article  Google Scholar 

  • Segerstedt B (1992) On ordinary ridge regression in generalized linear models. Commun Stat-Theory Methods 21(8):2227–2246

    Article  MathSciNet  Google Scholar 

  • Siray GU, Toker S, Kaciranlar S (2015) On the restricted Liu estimator in logistic regression model. Commun Stat-Simul Comput 44:217–232

    Article  MathSciNet  Google Scholar 

  • Stamey TA, Kabalin JN, McNeal JE, Johnstone IM, Freiha F, Redwine EA, Yang N (1989) Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate: II. Radical prostatectomy treated patients. J Urol 141(5):1076–1083

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor and referees for valuable and constructive comments which significantly improved the presentation of paper and led to put many details.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Arabi Belaghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The technical proofs of the Theorems 3.3 and 3.5 are included in this section. First, we establish the two fundamental Lemmas.

Lemma 1

Let \(\varvec{\mathcal {X}}\) be q-dimensional normal vector distributed as \(\mathcal {N}_{q}(\varvec{\mu }_{x},\varvec{\Sigma }_{q})\), then, for a measurable function of \(\varphi \), we have

$$\begin{aligned} \mathbb {E}\big [\varvec{\mathcal {X}}\varphi (\varvec{\mathcal {X}}^{\prime }\varvec{\mathcal {X}})\big ]&=\varvec{\mu }_{x}\mathbb {E}\big [\varphi \chi _{q+2}^{2}(\Delta ^{2})\big ],\\ \mathbb {E}\big [\varvec{\mathcal {X}}\varvec{\mathcal {X}}^{\prime }\varphi (\varvec{\mathcal {X}}^{\prime }\varvec{\mathcal {X}})\big ]&=\varvec{\Sigma }_{q}\mathbb {E}\big [\varphi \chi _{q+2}^{2}(\Delta ^{2})\big ]+\varvec{\mu }_{x}\varvec{\mu }^{\prime }_{x}\mathbb {E}\big [\varphi \chi _{q+4}^{2}(\Delta ^{2})\big ]. \end{aligned}$$

where \(\Delta ^{2}\) is the non-centrality parameter.

Proof

The proof of this lemma can be found in Judge and Bock (1978). \(\square \)

Lemma 2

Under the assumed regularity conditions and local alternatives \(\varvec{\mathcal {K}}_{(n)}\), as \(n\rightarrow \infty \), we have

$$\begin{aligned}&\Bigg [\begin{array}{cc}\varvec{\eta }_{1n}\\ \varvec{\eta }_{3n}\end{array}\Bigg ]{{\mathop {\longrightarrow }\limits ^{\mathcal {D}}}}\Bigg [\begin{array}{cc}\varvec{\eta }_{1}\\ \varvec{\eta }_{3}\end{array}\Bigg ]\; \sim \mathcal {N}_{2p}\Bigg (\Bigg [\begin{array}{cc}\varvec{0}\\ -\varvec{J}\end{array}\Bigg ],\Bigg [\begin{array}{cc}\varvec{\Sigma }^{-1}&{}\varvec{\Sigma }^{-1}-\varvec{J}_0\\ \varvec{\Sigma }^{-1}-\varvec{J}_0&{}\varvec{\Sigma }^{-1}-\varvec{J}_0\\ \end{array}\Bigg ]\Bigg ),\\&\Bigg [\begin{array}{cc}\varvec{\eta }_{2n}\\ \varvec{\eta }_{3n}\end{array}\Bigg ]{{\mathop {\longrightarrow }\limits ^{\mathcal {D}}}}\Bigg [\begin{array}{cc}\varvec{\eta }_{2}\\ \varvec{\eta }_{3}\end{array}\Bigg ]\; \sim \mathcal {N}_{2p}\Bigg (\Bigg [\begin{array}{cc}-\varvec{J}\\ \varvec{J}\end{array}\Bigg ],\Bigg [\begin{array}{cc}\varvec{\Sigma }^{-1}-\varvec{J}_0&{}\varvec{0}\\ \varvec{0}&{}\varvec{J}_0\\ \end{array}\Bigg ]\Bigg ), \end{aligned}$$

where \(\varvec{\eta }_{1n}=\sqrt{n}(\hat{\varvec{\beta }}^{UE}_{\kappa }-\varvec{\beta })\), \(\varvec{\eta }_{2n}=\sqrt{n}(\hat{\varvec{\beta }}^{RE}_{\kappa }-\varvec{\beta })\), \(\varvec{\eta }_{3n}=\sqrt{n}(\hat{\varvec{\beta }}^{UE}_{\kappa }-\hat{\varvec{\beta }}^{RE}_{\kappa })\), \(\varvec{J}=\varvec{\Sigma }^{-1}\varvec{F}^{\mathsf {T}}(\varvec{F}\varvec{\Sigma }^{-1}\varvec{F}^{\mathsf {T}})^{-1}\varvec{\xi }\) and \(\varvec{J}_0=\varvec{J}\varvec{\xi }^{-1}\varvec{F}\varvec{\Sigma }^{-1}\).

Proof

For detailed proof, see Lisawadi et al. (2016). \(\square \)

1.1 Proof of Theorem 3.3

Here, we provide the proof of the ADB expressions of the proposed estimators. Based on Theorem 3.2, it is clear that

$$\begin{aligned} \text {ADB}\Big (\tilde{\varvec{\beta }}^{UE}_{\kappa }\Big )&=\mathbb {E}\Big [\lim _{n\rightarrow \infty }\sqrt{n}\big (\tilde{\varvec{\beta }}^{UE}_{\kappa }-\varvec{\beta }\big )\Big ]=\mathbb {E}[\varvec{U}^{(1)}]=-\kappa \varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }, \\ \text {ADB}\Big (\tilde{\varvec{\beta }}^{RE}_{\kappa }\Big )&=\mathbb {E}\Big [\lim _{n\rightarrow \infty }\sqrt{n}\big (\tilde{\varvec{\beta }}^{RE}_{\kappa }-\varvec{\beta }\big )\Big ]=\mathbb {E}[\varvec{U}^{(2)}]=-\kappa \varvec{\Sigma }^{-1}_{\kappa }\varvec{\beta }-\varvec{R}(\kappa )\varvec{J}. \end{aligned}$$

Then,

$$\begin{aligned} \text {ADB}\Big (\tilde{\varvec{\beta }}^{JS}_{\kappa }\Big )&=\mathbb {E}\Big [\lim _{n\rightarrow \infty } \sqrt{n}\big (\tilde{\varvec{\beta }}^{JS}_{\kappa }-\varvec{\beta }\big )\Big ]\\&=\mathbb {E}\Big [\lim _{n\rightarrow \infty }\sqrt{n}\Big (\tilde{\varvec{\beta }}^{UE}_{\kappa }-c\varvec{R}_{n}(\kappa )\big (\hat{\varvec{\beta }}^{UE}-\hat{\varvec{\beta }}^{RE}\big )\varvec{\Lambda }_{n}^{-1}-\varvec{\beta }\Big )\Big ]\\&= \mathbb {E}\Big [\lim _{n\rightarrow \infty }\sqrt{n} \big (\tilde{\varvec{\beta }}^{UE}_{\kappa }-\varvec{\beta }\big )\Big ]\\&\quad -c\mathbb {E}\Big [\lim _{n\rightarrow \infty }\sqrt{n}\Big (\varvec{R}_{n}(\kappa )\big (\hat{\varvec{\beta }}^{UE}-\hat{\varvec{\beta }}^{RE}\big )\varvec{\Lambda }_{n}^{-1}\Big )\Big ]\\&= \text {ADB}(\tilde{\varvec{\beta }}^{UE}_{\kappa })-c\varvec{R}(\kappa )\mathbb {E}[\varvec{\eta }^{(3)}\chi ^{-2}_{c+2}(\Delta ^{2})]\\&=-\kappa \varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }-c\varvec{R}(\kappa )\varvec{J}\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})], \end{aligned}$$

and

$$\begin{aligned} \text {ADB}\Big (\tilde{\varvec{\beta }}^{S+}_{\kappa }\Big )&=\mathbb {E}\Big [\lim _{n\rightarrow \infty } \sqrt{n}\big (\tilde{\varvec{\beta }}^{S+}_{\kappa }-\varvec{\beta }\big )\Big ]\\&=\mathbb {E}\Big [\lim _{n\rightarrow \infty } \sqrt{n}\Big (\tilde{\varvec{\beta }}^{JS}_{\kappa }-\varvec{R}_{n}(\kappa )\big (\hat{\varvec{\beta }}^{UE}-\hat{\varvec{\beta }}^{RE}\big )\big \lbrace 1-c\varvec{\Lambda }_{n}^{-1}\big \rbrace I\big (\varvec{\Lambda }_{n}<c\big )-\varvec{\beta }\Big )\Big ]\\&=\mathbb {E}\Big [\lim _{n\rightarrow \infty } \sqrt{n}\big (\tilde{\varvec{\beta }}^{JS}_{\kappa }-\varvec{\beta }\big )\Big ]\\&\quad -\mathbb {E}\Big [\lim _{n\rightarrow \infty } \sqrt{n}\Big (\varvec{R}_{n}(\kappa )\big (\hat{\varvec{\beta }}^{UE}_{n}-\hat{\varvec{\beta }}^{RE}_{n}\big )\big \lbrace 1-c\varvec{\Lambda }_{n}^{-1}\big \rbrace I\big (\varvec{\Lambda }_{n}<c\big )\Big )\Big ]\\&=\text {ADB}(\tilde{\varvec{\beta }}^{JS}_{\kappa })-\mathbb {E}\Big [\lim _{n\rightarrow \infty } \sqrt{n}\Big (\varvec{R}_{n}(\kappa )\big (\hat{\varvec{\beta }}^{UE}-\hat{\varvec{\beta }}^{RE}\big )I\big (\varvec{\Lambda }_{n}<c\big )\Big )\Big ]\\&\quad +c\mathbb {E}\Big [\lim _{n\rightarrow \infty } \sqrt{n}\Big (\varvec{R}_{n}(\kappa )\big (\hat{\varvec{\beta }}^{UE}-\hat{\varvec{\beta }}^{RE}\big )\varvec{\Lambda }_{n}^{-1} I\big (\varvec{\Lambda }_{n}<c\big )\Big )\Big ]\\&= \text {ADB}(\tilde{\varvec{\beta }}^{JS}_{\kappa })-\varvec{R}(\kappa )\mathbb {E}\Big [\varvec{\eta }^{(3)}I\big (\chi ^{2}_{c+2}(\Delta ^{2})<c\big )\Big ]\\&\quad +c\varvec{R}(\kappa )\mathbb {E}\Big [\varvec{\eta }^{(3)}\chi ^{-2}_{c+2}(\Delta ^{2})I\big (\chi ^{2}_{c+2}(\Delta ^{2})<c\big )\Big ]\\&=-\,\kappa \varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }-\varvec{R}(\kappa )\varvec{J}\mathbb {E}\Big [I\big (\chi ^{2}_{c+4}(\Delta ^{2})<c\big )\Big ]\\&\quad +c\varvec{R}(\kappa )\varvec{J}\mathbb {E}\Big [\chi ^{-2}_{c+4}(\Delta ^{2})I\big (\chi ^{2}_{c+4}(\Delta ^{2})<c\big )\Big ]\\&=-\,\kappa \varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }-\varvec{R}(\kappa )\varvec{J}\Big \lbrace H_{c+4}(c;\Delta ^{2})+c\mathbb {E}\Big [\chi ^{-2}_{c+4}(\Delta ^{2})I\big (\chi ^{2}_{c+4}(\Delta ^{2})>c\big )\Big ]\Big \rbrace . \end{aligned}$$

\(\square \)

1.2 Proof of Theorem 3.5

To prove this theorem, we first derive the asymptotic covariance matrix of the estimators. The asymptotic covariance of an estimator \(\hat{\varvec{\beta }}^{*}\) is defined as follows

$$\begin{aligned} \varvec{V}(\hat{\varvec{\beta }}^{*})=\mathbb {E}\Big [\lim _ {n\rightarrow \infty }\sqrt{n}\big (\hat{\varvec{\beta }}^{*}-\varvec{\beta }\big )\sqrt{n}\big (\hat{\varvec{\beta }}^{*}-\varvec{\beta }\big )^{\mathsf {T}}\Big ]. \end{aligned}$$

First, we derive the covariance matrices of the URRE and RRRE as follows

$$\begin{aligned} \varvec{V}\Big (\tilde{\varvec{\beta }}^{UE}_{\kappa }\Big )&=\mathbb {E}\Big [\lim _{n\rightarrow \infty }\sqrt{n}\big (\tilde{\varvec{\beta }}^{UE}_{\kappa }-\varvec{\beta }\big )\sqrt{n}\big (\tilde{\varvec{\beta }}^{UE}_{\kappa }-\varvec{\beta }\big )^{\mathsf {T}}\Big ]\\&=\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{U}^{(1)}_{n}(\varvec{U}^{(1)}_n)^{\mathsf {T}}\Big ]=\mathbb {E}\big [\varvec{U}^{(1)}(\varvec{U}^{(1)})^{\mathsf {T}}\big ]\\&=\mathbb {V}\big (\varvec{U}^{(1)}\big )+\mathbb {E}[\varvec{U}^{(1)}]\mathbb {E}[(\varvec{U}^{(1)})^{\mathsf {T}}]\\&=\varvec{R}(\kappa )\varvec{\Sigma }^{-1}\varvec{R}(\kappa )+\kappa ^{2}\varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1},\\ \varvec{V}\Big (\tilde{\varvec{\beta }}^{RE}_{\kappa }\Big )&=\mathbb {E}\Big [\lim _{n\rightarrow \infty }\sqrt{n}\big (\tilde{\varvec{\beta }}^{RE}_{\kappa }-\varvec{\beta }\big )\sqrt{n}\big (\tilde{\varvec{\beta }}^{RE}_{\kappa }-\varvec{\beta }\big )^{\mathsf {T}}\Big ]\\&=\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{U}^{(2)}_{n}(\varvec{U}^{(2)}_n)^{\mathsf {T}}\Big ]= \mathbb {E}\Big [\varvec{U}^{(2)}(\varvec{U}^{(2)})^{\mathsf {T}}\Big ]\\&= \mathbb {V}\big (\varvec{U}^{(2)}\big )+\mathbb {E}[\varvec{U}^{(2)}]\mathbb {E}[(\varvec{U}^{(2)})^{\mathsf {T}}]\\&=\varvec{R}(\kappa )[\varvec{\Sigma }^{-1}-\varvec{J}_0]\varvec{R}(\kappa )+\kappa ^{2}\varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}+\varvec{R}(\kappa )\varvec{J}\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\\&\quad +\kappa [\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }+\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\varvec{R}(\kappa )\varvec{J}]. \end{aligned}$$

Next, we obtain \(\varvec{\Sigma }^{*}(\tilde{\varvec{\beta }}^{JS}_{\kappa })\) as follows

$$\begin{aligned} \varvec{V}\Big (\tilde{\varvec{\beta }}^{JS}_{\kappa }\Big )&=\mathbb {E}\Big [\lim _{n\rightarrow \infty }\sqrt{n}\big (\tilde{\varvec{\beta }}^{JS}_{\kappa }-\varvec{\beta }\big )\sqrt{n}\big (\tilde{\varvec{\beta }}^{JS}_{\kappa }-\varvec{\beta }\big )^{\mathsf {T}}\Big ]\\&= \mathbb {E}\Big [\lim _{n\rightarrow \infty }\sqrt{n}\Big \lbrace \tilde{\varvec{\beta }}^{UE}_{\kappa }-c\varvec{R}_{n}(\kappa )\big (\hat{\varvec{\beta }}^{UE}-\hat{\varvec{\beta }}^{RE}\big )\varvec{\Lambda }_{n}^{-1}-\varvec{\beta }\Big \rbrace \\&\quad \times \sqrt{n}\Big \lbrace \tilde{\varvec{\beta }}^{UE}_{\kappa }-c\varvec{R}_{n}(\kappa )\big (\hat{\varvec{\beta }}^{UE}-\hat{\varvec{\beta }}^{RE}\big )\varvec{\Lambda }_{n}^{-1}-\varvec{\beta }\Big \rbrace ^{\mathsf {T}}\Big ]\\&= \mathbb {E}\Big [\lim _{n\rightarrow \infty } \Big \lbrace \varvec{U}^{(1)}_{n}-c\varvec{R}_{n}(\kappa )\varvec{\eta }^{(3)}_{n}\varvec{\Lambda }_{n}^{-1}\Big \rbrace \Big \lbrace \varvec{U}^{(1)}_{n}-c\varvec{R}_{n}(\kappa )\varvec{\eta }^{(3)}_{n}\varvec{\Lambda }_{n}^{-1}\Big \rbrace ^{\mathsf {T}}\Big ]\\&=\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{U}^{(1)}_{n}(\varvec{U}^{(1)}_n)^{\mathsf {T}}\Big ]-c\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{U}^{(1)}_{n}(\varvec{\eta }^{(3)}_n)^{\mathsf {T}}\varvec{\Lambda }_{n}^{-1}\varvec{R}_{n}(\kappa )\Big ]\\&\quad -c\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{R}_{n}(\kappa )\varvec{\eta }^{(3)}_{n}(\varvec{U}^{(1)}_n)^{\mathsf {T}}\varvec{\Lambda }_{n}^{-1}\Big ] +c^{2}\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{R}_{n}(\kappa )\varvec{\eta }^{(3)}_{n}(\varvec{\eta }^{(3)}_n)^{\mathsf {T}}\varvec{\Lambda }_{n}^{-2}\varvec{R}_{n}(\kappa )\Big ]\\&=\underbrace{\mathbb {E}\Big [\varvec{U}^{(1)}(\varvec{U}^{(1)})^{\mathsf {T}}\Big ]} _{E_0} -c\underbrace{\mathbb {E}\Big [\varvec{U}^{(1)}(\varvec{\eta }^{(3)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]} _{E_1}\varvec{R}(\kappa )\\&\quad -c\varvec{R}(\kappa )\underbrace{\mathbb {E}\Big [\varvec{\eta }^{(3)}(\varvec{U}^{(1)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]} _{E_2}+c^{2}\varvec{R}(\kappa )\underbrace{\mathbb {E}\Big [\varvec{\eta }^{(3)}(\varvec{\eta }^{(3)})^{\mathsf {T}}\chi ^{-4}_{c+2}(\Delta ^{2})\Big ]} _{E_3}\varvec{R}(\kappa ). \end{aligned}$$

where

$$\begin{aligned} E_{0}&=\mathbb {V}(\varvec{U}^{(1)})+\mathbb {E}[\varvec{U}^{(1)}]\mathbb {E}[(\varvec{U}^{(1)})^{\mathsf {T}}]=\varvec{R}(\kappa )\varvec{\Sigma }^{-1}\varvec{R}(\kappa )+\kappa ^{2}\varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1},\\ E_{1}&=\varvec{R}(\kappa )\mathbb {E}\Big [\varvec{\eta }^{(1)}(\varvec{\eta }^{(3)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]+\big (\varvec{R}(\kappa )-\varvec{I}_{p}\big )\varvec{\beta }\mathbb {E}\Big [(\varvec{\eta }^{(3)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]\\&=\varvec{R}(\kappa )\mathbb {E}\Big [\mathbb {E}\Big (\varvec{\eta }^{(1)}(\varvec{\eta }^{(3)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})|\varvec{\eta }^{(3)}\Big )\Big ]-\kappa \varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }\mathbb {E}\Big [(\varvec{\eta }^{(3)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]\\&=\varvec{R}(\kappa )\mathbb {E}\Big [\mathbb {E}\big (\varvec{\eta }^{(1)}|\varvec{\eta }^{(3)})(\varvec{\eta }^{(3)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]-\kappa \varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }\mathbb {E}\Big [(\varvec{\eta }^{(3)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]\\&=\varvec{R}(\kappa )\mathbb {E}\Big [\big (\varvec{\eta }^{(3)}-\varvec{J}\big )(\varvec{\eta }^{(3)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]-\kappa \varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }\mathbb {E}\Big [(\varvec{\eta }^{(3)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]\\&=\varvec{R}(\kappa ) \Big \lbrace \mathbb {E}\big [\varvec{\eta }^{(3)}(\varvec{\eta }^{(3)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\big ]-\varvec{J}\mathbb {E}\big [(\varvec{\eta }^{(3)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\big ]\Big \rbrace \\&\quad -\kappa \varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }\mathbb {E}\Big [(\varvec{\eta }^{(3)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]. \end{aligned}$$

Using Lemma 1 and the well known identity \(\mathbb {E}[\chi ^{-2}_{k+2}(\Delta ^{2})]-\mathbb {E}[\chi ^{-2}_{k+4}(\Delta ^{2})]=2\mathbb {E}[\chi ^{-4}_{k+4}(\Delta ^{2})]\), \(E_1\) is obtained as

$$\begin{aligned} E_1&=\varvec{R}(\kappa )\varvec{J}_0\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})]-2\varvec{R}(\kappa )\varvec{J}\varvec{J}^{\mathsf {T}}\mathbb {E}[\chi ^{-4}_{c+4}(\Delta ^{2})]-\kappa \varvec{J}^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})]. \end{aligned}$$

For \(E_2\), we have

$$\begin{aligned} E_2&=\mathbb {E}\Big [\varvec{\eta }^{(3)}(\varvec{\eta }^{(1)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]\varvec{R}(\kappa )+\varvec{\beta }^{\mathsf {T}} \big (\varvec{R}(\kappa )-\varvec{I}_{p}\big )\mathbb {E}\Big [\varvec{\eta }^{(3)}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]\\&=\mathbb {E}\Big [\mathbb {E}\Big (\varvec{\eta }^{(3)}(\varvec{\eta }^{(1)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})| \varvec{\eta }^{(1)}\Big )\Big ]\varvec{R}(\kappa )-\kappa \varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\mathbb {E}\Big [\varvec{\eta }^{(3)}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]\\&=\mathbb {E}\Big [\mathbb {E}\big (\varvec{\eta }^{(3)}|\varvec{\eta }^{(1)})(\varvec{\eta }^{(1)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]\varvec{R}(\kappa )-\kappa \varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\varvec{J}\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})]\\&=\mathbb {E}\Big [\big (\varvec{J}_0\varvec{\Sigma }\varvec{\eta }^{(1)}+\varvec{J}\big )(\varvec{\eta }^{(1)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\Big ]\varvec{R}(\kappa )-\kappa \varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\varvec{J}\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})]\\&=\mathbb {E} \Big [\varvec{J}_0\varvec{\Sigma }\mathbb {E}\big [\varvec{\eta }^{(1)}(\varvec{\eta }^{(1)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\big ]+\varvec{J}\mathbb {E}\big [(\varvec{\eta }^{(1)})^{\mathsf {T}}\chi ^{-2}_{c+2}(\Delta ^{2})\big ]\Big ]\varvec{R}(\kappa )\\&\quad -\kappa \varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\varvec{J}\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})]\\&=\varvec{J}_0\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})]\varvec{R}(\kappa )-\kappa \varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\varvec{J}\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})]. \end{aligned}$$

and

$$\begin{aligned} E_3&=\varvec{J}_0\mathbb {E}[\chi ^{-4}_{c+4}(\Delta ^{2})]+\varvec{J}\varvec{J}^{\mathsf {T}}\mathbb {E}[\chi ^{-4}_{c+6}(\Delta ^{2})]. \end{aligned}$$

Then, \(\varvec{V}(\tilde{\varvec{\beta }}^{JS}_{\kappa })\) can be written in form of

$$\begin{aligned} \varvec{V}(\tilde{\varvec{\beta }}^{JS}_{\kappa })&=\varvec{R}(\kappa )\Big [\varvec{\Sigma }^{-1}-c\varvec{J}_0\Big \lbrace 2\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})]-c\mathbb {E}[\chi ^{-4}_{c+4}(\Delta ^{2})]\Big \rbrace \Big ]\varvec{R}(\kappa )\\&\quad +c\kappa \big [\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }+\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\varvec{R}(\kappa )\varvec{J}\big ]\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})]\\&\quad +c(c+2)\varvec{R}(\kappa )\varvec{J}\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\mathbb {E}[\chi ^{-4}_{c+6}(\Delta ^{2})]+\kappa ^{2}\varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}. \end{aligned}$$

Finally, \(\varvec{V}\Big (\tilde{\varvec{\beta }}^{\text {S+}}_{\kappa }\Big )\) can be obtained as follows

$$\begin{aligned} \varvec{V}\Big (\tilde{\varvec{\beta }}^{S+}_{\kappa }\Big )&=\mathbb {E}\Big [\lim _{n\rightarrow \infty } \sqrt{n}\big (\tilde{\varvec{\beta }}^{S+}_{\kappa }-\varvec{\beta }\big )\sqrt{n}\big (\tilde{\varvec{\beta }}^{S+}_{\kappa }-\varvec{\beta }\big )^{\mathsf {T}}\Big ]\\&=\mathbb {E}\Bigg [\lim _{n\rightarrow \infty }\Big \lbrace \sqrt{n}\big (\tilde{\varvec{\beta }}^{JS}_{\kappa }-\varvec{\beta }\big )-\varvec{R}_{n}(\kappa ) \big [1-c\varvec{\Lambda }_{n}^{-1}\big ]\varvec{\eta }^{(3)}_{n}I(\varvec{\Lambda }_{n}<c)\Big \rbrace \\&\quad \times \Big \lbrace \sqrt{n}\big (\tilde{\varvec{\beta }}^{JS}_{\kappa }-\varvec{\beta }\big )-\varvec{R}_{n}(\kappa )\big [1-c\varvec{\Lambda }_{n}^{-1}\big ]\varvec{\eta }^{(3)}_{n}I(\varvec{\Lambda }_{n}<c)\Big \rbrace ^{\mathsf {T}}\Bigg ]\\&=\varvec{V}(\tilde{\varvec{\beta }}^{JS}_{\kappa })-\mathbb {E}\Big [\lim _{n\rightarrow \infty }\sqrt{n}\big (\tilde{\varvec{\beta }}^{JS}_{\kappa }-\varvec{\beta }\big )\big (\varvec{\eta }^{(3)}_{n}\big )^{\mathsf {T}}\big [1-c\varvec{\Lambda }_{n}^{-1}\big ]I(\varvec{\Lambda }_{n}<c)\varvec{R}_{n}(\kappa )\Big ]\\&\quad -\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{R}_{n}(\kappa )\varvec{\eta }^{(3)}_{n}\Big \lbrace \sqrt{n}\big (\tilde{\varvec{\beta }}^{JS}_{\kappa }-\varvec{\beta }\big )\Big \rbrace ^{\mathsf {T}}\big [1-c\varvec{\Lambda }_{n}^{-1}\big ]I(\varvec{\Lambda }_{n}<c)\Big ]\\&\quad +\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{R}_{n}(\kappa )\varvec{\eta }^{(3)}_{n}(\varvec{\eta }^{(3)}_{n})^{\mathsf {T}}\big [1-c\varvec{\Lambda }_{n}^{-1}\big ]^{2}I(\varvec{\Lambda }_{n}<c)\varvec{R}_{n}(\kappa )\Big ]\\&=\varvec{V}(\tilde{\varvec{\beta }}^{JS}_{\kappa })-\mathbb {E}\Big [\lim _{n\rightarrow \infty }\sqrt{n}\big (\tilde{\varvec{\beta }}^{UE}_{\kappa }-\varvec{\beta }\big )(\varvec{\eta }^{(3)}_{n})^{\mathsf {T}}\big [1-c\varvec{\Lambda }_{n}^{-1}\big ]I(\varvec{\Lambda }_{n}<c)\varvec{R}_{n}(\kappa )\Big ]\\&\quad -\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{R}_{n}(\kappa )\varvec{\eta }^{(3)}_{n}\Big \lbrace \sqrt{n}\big (\tilde{\varvec{\beta }}^{UE}_{\kappa }-\varvec{\beta }\big )\Big \rbrace ^{\mathsf {T}}\big [1-c\varvec{\Lambda }_{n}^{-1}\big ]I(\varvec{\Lambda }_{n}<c)\Big ]\\&\quad +2c\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{R}_{n}(\kappa )\varvec{\eta }^{(3)}_{n}(\varvec{\eta }^{(3)}_{n})^{\mathsf {T}}\varvec{\varvec{\Lambda }}_{n}^{-1}\big [1-c\varvec{\Lambda }_{n}^{-1}\big ]I(\varvec{\Lambda }_{n}<c)\varvec{R}_{n}(\kappa )\Big ]\\&\quad +\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{R}_{n}(\kappa )\varvec{\eta }^{(3)}_{n}(\varvec{\eta }^{(3)}_{n})^{\mathsf {T}}\big [1-c\varvec{\Lambda }_{n}^{-1}\big ]^{2}I(\varvec{\Lambda }_{n}<c)\varvec{R}_{n}(\kappa )\Big ]\\&= \varvec{V}(\tilde{\varvec{\beta }}^{JS}_{\kappa })-\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{U}^{(1)}_{n}(\varvec{\eta }^{(3)}_{n})^{\mathsf {T}}\big [1-c\varvec{\Lambda }_{n}^{-1}\big ]I(\varvec{\Lambda }_{n}<c)\varvec{R}_{n}(\kappa )\Big ]\\&\quad -\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{R}_{n}(\kappa )\varvec{\eta }^{(3)}_{n}(\varvec{U}^{(1)}_{n})^{\mathsf {T}}\big [1-c\varvec{\Lambda }_{n}^{-1}\big ]I(\varvec{\Lambda }_{n}<c)\Big ]\\&\quad +2\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{R}_{n}(\kappa )\varvec{\eta }^{(3)}_{n}(\varvec{\eta }^{(3)}_{n})^{\mathsf {T}}\big [1-c\varvec{\Lambda }_{n}^{-1}\big ]I(\varvec{\Lambda }_{n}<c)\varvec{R}_{n}(\kappa )\Big ]\\&\quad -\mathbb {E}\Big [\lim _{n\rightarrow \infty }\varvec{R}_{n}(\kappa )\varvec{\eta }^{(3)}_{n}(\varvec{\eta }^{(3)}_{n})^{\mathsf {T}}\big [1-c\varvec{\Lambda }_{n}^{-1}\big ]^{2}I(\varvec{\Lambda }_{n}<c)\varvec{R}_{n}(\kappa )\Big ]\\&=\varvec{V}(\tilde{\varvec{\beta }}^{JS}_{\kappa })-\underbrace{\mathbb {E}\Big [\varvec{U}^{(1)}(\varvec{\eta }^{(3)})^{\mathsf {T}}\big [1-c\chi ^{-2}_{c+2}(\Delta ^{2})\big ]I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]} _{E4}\varvec{R}(\kappa )\\&\quad -\varvec{R}(\kappa )\underbrace{\mathbb {E}\Big [\varvec{\eta }^{(3)}(\varvec{U}^{(1)})^{\mathsf {T}}\big [1-c\chi ^{-2}_{c+2}(\Delta ^{2})\big ]I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]} _{E_5}\\&\quad +2\varvec{R}(\kappa )\mathbb {E}\Big [\varvec{\eta }^{(3)}(\varvec{\eta }^{(3)})^{\mathsf {T}}\big [1-c\chi ^{-2}_{c+2}(\Delta ^{2})\big ]I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\varvec{R}(\kappa )\\&\quad -\varvec{R}(\kappa )\mathbb {E}\Big [\varvec{\eta }^{(3)}(\varvec{\eta }^{(3)})^{\mathsf {T}}\big [1-c\chi ^{-2}_{c+2}(\Delta ^{2})\big ]^{2}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\varvec{R}(\kappa ), \end{aligned}$$

where

$$\begin{aligned} E_4&=\varvec{R}(\kappa )\mathbb {E}\Big [\mathbb {E}\Big [\varvec{\eta }^{(1)}(\varvec{\eta }^{(3)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)|\varvec{\eta }^{(3)}\Big ]\Big ]\\&\quad -\kappa \varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }\mathbb {E}\Big [(\varvec{\eta }^{(3)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\\&=\varvec{R}(\kappa )\mathbb {E}\Big [\mathbb {E}\big [\varvec{\eta }^{(1)}|\varvec{\eta }^{(3)}\big ](\varvec{\eta }^{(3)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\\&\quad -\kappa \varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }\mathbb {E}\Big [(\varvec{\eta }^{(3)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\\&=\varvec{R}(\kappa )\mathbb {E}\Big [\varvec{\eta }^{(3)}(\varvec{\eta }^{(3)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\\&\quad -\varvec{R}(\kappa )\varvec{J}\mathbb {E}\Big [(\varvec{\eta }^{(3)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\\&\quad -\kappa \varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }\mathbb {E}\Big [(\varvec{\eta }^{(3)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ],\\ E_5&=\mathbb {E}\Big [\mathbb {E}\Big [\varvec{\eta }^{(3)}(\varvec{\eta }^{(1)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)|\varvec{\eta }^{(1)}\Big ]\Big ]\varvec{R}(\kappa )\\&\quad -\kappa \varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\mathbb {E}\Big [\varvec{\eta }^{(3)}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\\&=\mathbb {E}\Big [\mathbb {E}\big [\varvec{\eta }^{(3)}|\varvec{\eta }^{(1)}\big ](\varvec{\eta }^{(1)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\varvec{R}(\kappa )\\&\quad -\kappa \varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\mathbb {E}\Big [\varvec{\eta }^{(3)}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\\&=\varvec{J}_0\varvec{\Sigma }\mathbb {E}\Big [\varvec{\eta }^{(1)}(\varvec{\eta }^{(1)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\varvec{R}(\kappa )\\&\quad +\varvec{J}\mathbb {E}\Big [(\varvec{\eta }^{(1)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\varvec{R}(\kappa )\\&\quad -\kappa \varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\mathbb {E}\Big [\varvec{\eta }^{(3)}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]. \end{aligned}$$

By using Lemma 1, we obtain

$$\begin{aligned} E_5&=\varvec{J}\mathbb {E}\big [\{1-c\chi ^{-2}_{c+4}(\Delta ^{2})\}I(\chi ^{2}_{c+4}(\Delta ^{2})<c)\big ]\varvec{R}(\kappa )\\&\quad -\kappa \varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\varvec{J}\mathbb {E}\big [\{1-c\chi ^{-2}_{c+4}(\Delta ^{2})\}I(\chi ^{2}_{c+4}(\Delta ^{2})<c)\big ]. \end{aligned}$$

Thus,

$$\begin{aligned} \varvec{V}\Big (\tilde{\varvec{\beta }}^{S+}_{\kappa }\Big )&=\varvec{V}(\tilde{\varvec{\beta }}^{JS}_{\kappa })-\varvec{R}(\kappa )\mathbb {E}\Big [\varvec{\eta }^{(3)}(\varvec{\eta }^{(3)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\varvec{R}(\kappa )\\&\quad +\varvec{R}(\kappa )\varvec{J}\mathbb {E}\Big [(\varvec{\eta }^{(3)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\varvec{R}(\kappa )\\&\quad +\kappa \varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }\mathbb {E}\Big [(\varvec{\eta }^{(3)})^{\mathsf {T}}\{1-c\chi ^{-2}_{c+2}(\Delta ^{2})\}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\varvec{R}(\kappa )\\&\quad -\varvec{R}(\kappa )\varvec{J}_0\mathbb {E}\big [\{1-c\chi ^{-2}_{c+4}(\Delta ^{2})\}I(\chi ^{2}_{c+4}(\Delta ^{2})<c)\big ]\varvec{R}(\kappa )\\&\quad +\kappa \varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\varvec{R}(\kappa )\varvec{J}\mathbb {E}\big [\{1-c\chi ^{-2}_{c+4}(\Delta ^{2})\}I(\chi ^{2}_{c+4}(\Delta ^{2})<c)\big ]\\&\quad +2\varvec{R}(\kappa )\mathbb {E}\Big [\varvec{\eta }^{(3)}(\varvec{\eta }^{(3)})^{\mathsf {T}}\big [1-c\chi ^{-2}_{c+2}(\Delta ^{2})\big ]I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\varvec{R}(\kappa )\\&\quad -\varvec{R}(\kappa )\mathbb {E}\Big [\varvec{\eta }^{(3)}(\varvec{\eta }^{(3)})^{\mathsf {T}}\big [1-c\chi ^{-2}_{c+2}(\Delta ^{2})\big ]^{2}I(\chi ^{2}_{c+2}(\Delta ^{2})<c)\Big ]\varvec{R}(\kappa ). \end{aligned}$$

Finally,

$$\begin{aligned} \varvec{V}\Big (\tilde{\varvec{\beta }}^{S+}_{\kappa }\Big )&=\varvec{V}\Big (\tilde{\varvec{\beta }}^{JS}_{\kappa }\Big )-\varvec{R}(\kappa )\varvec{J}_0\varvec{R}(\kappa )\mathbb {E}\big [\{1-c\chi ^{-2}_{c+4}(\Delta ^{2})\}I(\chi ^{2}_{c+4}(\Delta ^{2})<c)\big ]\\&\quad +\varvec{R}(\kappa )\varvec{J}\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\Bigg \lbrace \mathbb {E}\big [\{1-c\chi ^{-2}_{c+6}(\Delta ^{2})\}I(\chi ^{2}_{c+6}(\Delta ^{2})<c)\big ]\\&\quad +\mathbb {E}\big [\{1-c\chi ^{-2}_{c+4}(\Delta ^{2})\}I(\chi ^{2}_{c+4}(\Delta ^{2})<c)\big ]\\&\quad -\mathbb {E}\big [\{1-c\chi ^{-2}_{c+6}(\Delta ^{2})\}^{2}I(\chi ^{2}_{c+6}(\Delta ^{2})<c)\big ]\Bigg \rbrace \\&\quad +\kappa [\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }^{-1}_{\kappa }\varvec{R}(\kappa )\varvec{J}+\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\varvec{\Sigma }^{-1}_{\kappa }\varvec{\beta }] \mathbb {E}\big [\{1-c\chi ^{-2}_{c+4}(\Delta ^{2})\}I(\chi ^{2}_{c+4}(\Delta ^{2})<c)\big ]. \end{aligned}$$

Now, we provide the proof of the ADR expressions of the proposed estimators.

$$\begin{aligned} \mathcal {R}\Big (\tilde{\varvec{\beta }}^{UE}_{\kappa };\varvec{Q}\Big )&=trace\big (\varvec{Q}\varvec{V}(\tilde{\varvec{\beta }}^{UE}_{\kappa })\big )=trace\big (\varvec{Q}\varvec{R}(\kappa )\varvec{\Sigma }^{-1}\varvec{R}(\kappa )\big )+\kappa ^{2}\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }^{-1}_{\kappa }\varvec{Q}\varvec{\Sigma }^{-1}_{\kappa }\varvec{\beta }. \end{aligned}$$

Then,

$$\begin{aligned} \mathcal {R}\Big (\tilde{\varvec{\beta }}^{RE}_{\kappa };\varvec{Q}\Big )&=trace\big (\varvec{Q}\varvec{V}(\tilde{\varvec{\beta }}^{RE}_{\kappa })\big )=\mathcal {R}(\tilde{\varvec{\beta }}^{UE}_{\kappa };\varvec{Q})-trace\big (\varvec{Q}\varvec{R}(\kappa )\varvec{J}_0\varvec{R}(\kappa )\big )\\&\quad +trace\big (\varvec{Q}\varvec{R}(\kappa )\varvec{J}\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\big )\!+\! \kappa [\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }^{-1}_{\kappa }\varvec{Q}\varvec{R}(\kappa )\varvec{J}\!+\!\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\varvec{Q}\varvec{\Sigma }^{-1}_{\kappa }\varvec{\beta }]\\&=\mathcal {R}(\tilde{\varvec{\beta }}^{UE}_{\kappa };\varvec{Q})-trace\big (\varvec{Q}\varvec{R}(\kappa )\varvec{J}_0\varvec{R}(\kappa )\big )\\&\quad +\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\varvec{Q}\varvec{R}(\kappa )\varvec{J}+\kappa [\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }^{-1}_{\kappa }\varvec{Q}\varvec{R}(\kappa )\varvec{J}+\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\varvec{Q}\varvec{\Sigma }^{-1}_{\kappa }\varvec{\beta }]. \end{aligned}$$

Also

$$\begin{aligned} \mathcal {R}\Big (\tilde{\varvec{\beta }}^{JS}_{\kappa };\varvec{Q}\Big )&=trace\big (\varvec{Q}\varvec{V}(\tilde{\varvec{\beta }}^{JS}_{\kappa })\big )\\&=\mathcal {R}(\tilde{\varvec{\beta }}^{UE}_{\kappa };\varvec{Q})- trace\big (\varvec{Q}\varvec{R}(\kappa )\varvec{J}_0\varvec{R}(\kappa )\big )\Big \lbrace 2c\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})]-c^{2}\mathbb {E}[\chi ^{-4}_{c+4}(\Delta ^{2})]\Big \rbrace \\&\quad +c\kappa \big [\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\varvec{Q}\varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }+\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\varvec{Q}\varvec{R}(\kappa )\varvec{J}\big ]\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})]\\&\quad +c(c+2)trace\big (\varvec{Q}\varvec{R}(\kappa )\varvec{J}\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\big )\mathbb {E}[\chi ^{-4}_{c+6}(\Delta ^{2})]\\&=\mathcal {R}(\tilde{\varvec{\beta }}^{UE}_{\kappa };\varvec{Q})-trace\big (\varvec{Q}\varvec{R}(\kappa )\varvec{J}_0\varvec{R}(\kappa )\big )\Big \lbrace 2c\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})]-c^{2}\mathbb {E}[\chi ^{-4}_{c+4}(\Delta ^{2})]\Big \rbrace \\&\quad +c\kappa \big [\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\varvec{Q}\varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }+\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\varvec{Q}\varvec{R}(\kappa )\varvec{J}\big ]\mathbb {E}[\chi ^{-2}_{c+4}(\Delta ^{2})]\\&\quad +c(c+2)\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\varvec{Q}\varvec{R}(\kappa )\varvec{J}\mathbb {E}[\chi ^{-4}_{c+6}(\Delta ^{2})]. \end{aligned}$$

Finally,

$$\begin{aligned}&\mathcal {R}\Big (\tilde{\varvec{\beta }}^{S+}_{\kappa };\varvec{Q}\Big )=trace\big (\varvec{Q}\varvec{V}(\tilde{\varvec{\beta }}^{S+}_{\kappa })\big )=trace\big (\varvec{Q}{V}(\tilde{\varvec{\beta }}^{JS}_{\kappa })\big )\\&\quad -trace\big (\varvec{Q}\varvec{R}(\kappa )\varvec{J}_0\varvec{R}(\kappa )\big )\mathbb {E}\big [\{1-c\chi ^{-2}_{c+4}(\Delta ^{2})\}I(\chi ^{2}_{c+4}(\Delta ^{2})<c)\big ]\\&\quad +trace\big (\varvec{Q}\varvec{R}(\kappa )\varvec{J}\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\big )\Bigg \lbrace \mathbb {E}\big [\{1-c\chi ^{-2}_{c+6}(\Delta ^{2})\}I(\chi ^{2}_{c+6}(\Delta ^{2})<c)\big ]\\&\quad +\mathbb {E}\big [\{1-c\chi ^{-2}_{c+4}(\Delta ^{2})\}I(\chi ^{2}_{c+4}(\Delta ^{2})<c)\big ]\\&\quad -\mathbb {E}\big [\{1-c\chi ^{-2}_{c+6}(\Delta ^{2})\}^{2}I(\chi ^{2}_{c+6}(\Delta ^{2})<c)\big ]\Bigg \rbrace \\&\quad +\kappa \big [\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\varvec{Q}\varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }+\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\varvec{Q}\varvec{R}(\kappa )\varvec{J}\big ]\mathbb {E}\big [\{1-c\chi ^{-2}_{c+4}(\Delta ^{2})\}I(\chi ^{2}_{c+4}(\Delta ^{2})<c)\big ]\\&=\mathcal {R}(\tilde{\varvec{\beta }}^{JS}_{\kappa };\varvec{Q})-trace\big (\varvec{Q}\varvec{R}(\kappa )\varvec{J}_0\varvec{R}(\kappa )\big )\mathbb {E}\big [\{1-c\chi ^{-2}_{c+4}(\Delta ^{2})\}I(\chi ^{2}_{c+4}(\Delta ^{2})<c)\big ]\\&\quad +\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\varvec{Q}\varvec{R}(\kappa )\varvec{J}\Bigg \lbrace \mathbb {E}\big [\{1-c\chi ^{-2}_{c+6}(\Delta ^{2})\}I(\chi ^{2}_{c+6}(\Delta ^{2})<c)\big ]\\&\quad +\mathbb {E}\big [\{1-c\chi ^{-2}_{c+4}(\Delta ^{2})\}I(\chi ^{2}_{c+4}(\Delta ^{2})<c)\big ]\\&\quad -\mathbb {E}\big [\{1-c\chi ^{-2}_{c+6}(\Delta ^{2})\}^{2}I(\chi ^{2}_{c+6}(\Delta ^{2})<c)\big ]\Bigg \rbrace \\&\quad +\kappa \big [\varvec{J}^{\mathsf {T}}\varvec{R}(\kappa )\varvec{Q}\varvec{\Sigma }_{\kappa }^{-1}\varvec{\beta }+\varvec{\beta }^{\mathsf {T}}\varvec{\Sigma }_{\kappa }^{-1}\varvec{Q}\varvec{R}(\kappa )\varvec{J}\big ]\mathbb {E}\big [\{1-c\chi ^{-2}_{c+4}(\Delta ^{2})\}I(\chi ^{2}_{c+4}(\Delta ^{2})<c)\big ]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nooi Asl, M., Bevrani, H., Arabi Belaghi, R. et al. Ridge-type shrinkage estimators in generalized linear models with an application to prostate cancer data. Stat Papers 62, 1043–1085 (2021). https://doi.org/10.1007/s00362-019-01123-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01123-w

Keywords

Mathematics Subject Classification

Navigation