Skip to main content
Log in

On a multivariate IFR and positively dependent lifetime model induced by multiple shot-noise processes

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In reliability and survival analysis, the shot-noise processes have been intensively employed as a useful tool for modeling the impact of a dynamic environment (in the form of the point process of stresses) on survival characteristics of systems and organisms. However, the studies on the shot-noise processes have been mostly focused on the univariate analysis. In this paper, we develop a class of multivariate stochastic failure models based on a dynamic shock model induced by multiple shot-noise processes and study its properties. Explicit parametric forms for the multivariate survival functions are suggested. Multivariate ageing properties and dependence structures of the class are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen F, Gale D (2000) Financial contagion. J Polit Econ 108:1–34

    Article  Google Scholar 

  • Al-Mutairi DK, Ghitany ME, Kundu D (2011) A new bivariate distribution with weighted exponential marginals and its multivariate generalization. Stat Pap 52:921–936

    Article  MathSciNet  Google Scholar 

  • Aven T, Jensen U (1999) Stochastic models in reliability. Springer, New York

    Book  Google Scholar 

  • Balakrishna N, Jayakumar K (1997) Bivariate semi-Pareto distributions and processes. Stat Pap 38:149–165

    Article  MathSciNet  Google Scholar 

  • Barlow RE, Proschan F (1975) Statistical theory of reliability and life testing: probability models. Holt, Rinehart and Winston, New York

    MATH  Google Scholar 

  • Brindley EC, Thompson WA (1972) Dependence and ageing aspects of multivariate survival. J Am Stat Assoc 67:822–830

    Article  Google Scholar 

  • Cha JH, Badia G (2017) Multivariate reliability modelling based on dependent dynamic shock models. Appl Math Model 51:199–216

    Article  MathSciNet  Google Scholar 

  • Cha JH, Finkelstein M (2009) On a terminating shock process with independent wear increments. J Appl Probab 46:353–362

    Article  MathSciNet  Google Scholar 

  • Cha JH, Finkelstein M (2011) On new classes of extreme shock models and some generalizations. J Appl Probab 48:258–270

    Article  MathSciNet  Google Scholar 

  • Cha JH, Finkelstein M (2012) Information-based thinning of point processes and its application to shock models. J Stat Plan Inference 142:2345–2350

    Article  MathSciNet  Google Scholar 

  • Cha JH, Finkelstein M (2013) On generalized shock models for deteriorating systems. Appl Stoch Models Bus Ind 29(5):496–508

    MathSciNet  Google Scholar 

  • Cha JH, Mi J (2007) Study of a stochastic failure model in a random environment. J Appl Probab 44:151–163

    Article  MathSciNet  Google Scholar 

  • Finkelstein M, Cha JH (2013) Stochastic modelling for reliability. Shocks, burn-in and heterogeneous populations. Springer, London

  • Freund JE (1961) A bivariate extension of the exponential distribution. J Am Stat Assoc 56:971–977

    Article  MathSciNet  Google Scholar 

  • Gumbel EJ (1960) Bivariate exponential distribution. J Am Stat Assoc 55:698–707

    Article  MathSciNet  Google Scholar 

  • Gupta AK, Orozco-Castañeda JM, Nagar DK (2011) Non-central bivariate beta distribution. Stat Pap 52:139–152

    Article  MathSciNet  Google Scholar 

  • Hanagal DD (1991) Large sample tests for independence and symmetry in the multivariate exponential distribution. J Indian Stat Assoc 29(2):89–93

    MathSciNet  Google Scholar 

  • Hanagal DD (1996) A multivariate Pareto distribution. Commun Stat Theory Methods 25(7):1471–1488

    Article  MathSciNet  Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Jose KK, Ristić MM, Joseph A (2011) Marshall–Olkin bivariate Weibull distributions and processes. Stat Pap 52:789–798

    Article  MathSciNet  Google Scholar 

  • Lehmann EL (1966) Some concepts of dependence. Ann Math Stat 37:1137–1153

    Article  MathSciNet  Google Scholar 

  • Lemoine AJ, Wenocur ML (1985) On failure modeling. Nav Res Logist 32:497–508

    Article  MathSciNet  Google Scholar 

  • Lemoine AJ, Wenocur ML (1986) A note on shot-noise and reliability modeling. Oper Res 34:320–323

    Article  Google Scholar 

  • Li X, Qiu G (2007) Some preservation results of NBUC aging property with applications. Stat Pap 48:581–594

    Article  MathSciNet  Google Scholar 

  • Lund R, McCormic W, Xiao U (2004) Limiting properties of Poisson shot noise processes. J Appl Probab 41:911–918

    Article  MathSciNet  Google Scholar 

  • Marshall AW, Olkin I (1967) A multivariate exponential distribution. J Am Stat Assoc 62:30–44

    Article  MathSciNet  Google Scholar 

  • Mercier S, Pham HH (2014) A random shock model with mixed effect, including competing soft and sudden failures, and dependence. Methodology and Computing in Applied Probability. https://doi.org/10.1007/s11009-014-9423-6

  • Montoro-Cazorla D, P´erez-Oc´on R (2011) Two shock and wear systems under repair standing a finite number of shocks. Eur J Oper Res 214:298–307

  • Montoro-Cazorla D, P´erez-Oc´on R (2015) A reliability system under cumulative shocks governed by a BMAP. Appl Math Model 39:7620–7629

  • Montoro-Cazorla D, P´erez-Oc´on R, Segovia MC (2009) Shock and wear models under policy N using phase-type distributions. Appl Math Model 33:543–554

  • Nakagawa T (2007) Shock and damage models in reliability theory. Springer, London

    MATH  Google Scholar 

  • Proschan F, Sullo P (1976) Estimating the parameters of a multivariate exponential distribution. J Am Stat Assoc 71(354):465–472

    Article  MathSciNet  Google Scholar 

  • Rice J (1977) On generalized shot noise. Adv Appl Probab 9:553–565

    Article  MathSciNet  Google Scholar 

  • Ross SM (1996) Stochastic processes. Wiley, New York

    MATH  Google Scholar 

  • Segovia MC, Labeau PE (2013) Reliability of a multi-state system subject to shocks using phase-type distributions. Appl Math Model 37:4883–4904

    Article  MathSciNet  Google Scholar 

  • Sheu SH, Chen YL, Chang CC, Zhang ZG (2016) A note on a two variable block replacement policy for a system subject to non-homogeneous pure birth shocks. Appl Math Model 40:3703–3712

    Article  MathSciNet  Google Scholar 

  • Singpurwalla ND (1995) Survival in dynamic environment. Stat Sci 10:86–103

    Article  Google Scholar 

  • Singpurwalla ND, Youngren MA (1993) Multivariate distributions induced by dynamic environments. Scand J Stat 20:251–261

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first author was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) (No. 2016R1A2B2014211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Hwan Cha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

First suppose that x1 ≤ x2 ≤···≤ xn. In this case, the ordered set of {x1, x2,…,xn} is given by

$$ \{ x_{(1)} ,\; x_{(2)} , \ldots , x_{(n)} \} = \left\{ {x_{1} ,\;x_{2} , \ldots ,x_{n} } \right\}. $$

Observe that

$$ \begin{aligned} & P(X_{1} > x_{1} ,X_{2} > x_{2} , \ldots ,X_{n} > x_{n} |N(s),0 \le s \le x_{n} ,D_{1} ,D_{2} , \ldots ,D_{{N(x_{n} )}} ) \\ & \quad = \exp \left\{ { - \int\limits_{0}^{{x_{1} }} {r_{1} (s)ds} } \right\}\exp \left\{ { - \int\limits_{0}^{{x_{2} }} {r_{2} (s)ds} } \right\} \times \cdots \times \exp \left\{ { - \int\limits_{0}^{{x_{n} }} {r_{n} (s)ds} } \right\} \\ & \qquad \times \left[ {\prod\limits_{{j = 1}}^{{N(x_{1} )}} {(1 - P( \cup _{{i = 1}}^{n} A_{i} (T_{j} )))} } \right] \cdot \prod\limits_{{i = 1}}^{n} {\exp \left\{ { - k_{i} \sum\limits_{{j = 1}}^{{N(x_{1} )}} {D_{j} H_{i} (x_{i} - T_{j} )} } \right\}} \\ & \qquad \times \left[ {\prod\limits_{{j = N(x_{1} ) + 1}}^{{N(x_{2} )}} {(1 - P( \cup _{{i = 2}}^{n} A_{i} (T_{j} )))} } \right] \cdot \prod\limits_{{i = 2}}^{n} {\exp \left\{ { - k_{i} \sum\limits_{{j = N(x_{1} ) + 1}}^{{N(x_{2} )}} {D_{j} H_{i} (x_{i} - T_{j} )} } \right\}} \\ & \qquad \times \left[ {\prod\limits_{{j = N(x_{2} ) + 1}}^{{N(x_{3} )}} {(1 - P( \cup _{{i = 3}}^{n} A_{i} (T_{j} )))} } \right] \cdot \prod\limits_{{i = 3}}^{n} {\exp \left\{ { - k_{i} \sum\limits_{{j = N(x_{2} ) + 1}}^{{N(x_{3} )}} {D_{j} H_{i} (x_{i} - T_{j} )} } \right\}} \\ & \qquad \times \cdots \times \left[ {\prod\limits_{{j = N(x_{{n - 1}} ) + 1}}^{{N(x_{n} )}} {(1 - P( \cup _{{i = n}}^{n} A_{i} (T_{j} )))} } \right] \cdot \exp \left\{ { - k_{n} \sum\limits_{{j = N(x_{{n - 1}} ) + 1}}^{{N(x_{n} )}} {D_{j} H_{n} (x_{i} - T_{j} )} } \right\} \\ & \quad = \exp \left\{ { - \sum\limits_{{i = 1}}^{n} {\int\limits_{0}^{{x_{i} }} {r_{i} (s)ds} } } \right\} \\ & \qquad \times \left[ {\prod\limits_{{j = 1}}^{{N(x_{1} )}} {(1 - P( \cup _{{i = 1}}^{n} A_{i} (V_{{1j}} )))} } \right] \cdot \prod\limits_{{i = 1}}^{n} {\exp \left\{ { - k_{i} \sum\limits_{{j = 1}}^{{N(x_{1} )}} {D_{j} H_{i} (x_{i} - V_{{1j}} )} } \right\}} \\ & \qquad \times \left[ {\prod\limits_{{j = 1}}^{{N(x_{2} ) - N(x_{1} )}} {(1 - P( \cup _{{i = 2}}^{n} A_{i} (V_{{2j}} )))} } \right] \cdot \prod\limits_{{i = 2}}^{n} {\exp \left\{ { - k_{i} \sum\limits_{{j = 1}}^{{N(x_{2} ) - N(x_{1} )}} {D_{{N(x_{1} ) + j}} H_{i} (x_{i} - V_{{2j}} )} } \right\}} \\ & \qquad \times \left[ {\prod\limits_{{j = 1}}^{{N(x_{3} ) - N(x_{2} )}} {(1 - P( \cup _{{i = 3}}^{n} A_{i} (V_{{3j}} )))} } \right] \cdot \prod\limits_{{i = 3}}^{n} {\exp \left\{ { - k_{i} \sum\limits_{{j = 1}}^{{N(x_{3} ) - N(x_{2} )}} {D_{{N(x_{2} ) + j}} H_{i} (x_{i} - V_{{3j}} )} } \right\}} \\ & \qquad \times \cdots \times \left[ {\prod\limits_{{j = 1}}^{{N(x_{n} ) - N(x_{{n - 1}} )}} {(1 - P( \cup _{{i = n}}^{n} A_{i} (V_{{nj}} )))} } \right] \cdot \exp \left\{ { - k_{n} \sum\limits_{{j = 1}}^{{N(x_{n} ) - N(x_{{n - 1}} )}} {D_{{N(x_{{n - 1}} ) + j}} H_{n} (x_{n} - V_{{nj}} )} } \right\} \\ & \quad = \exp \left\{ { - \sum\limits_{{i = 1}}^{n} {\int\limits_{0}^{{x_{i} }} {r_{i} (s)ds} } } \right\} \\ & \qquad \times \prod\limits_{{j = 1}}^{{N(x_{1} )}} {\left[ {(1 - P( \cup _{{i = 1}}^{n} A_{i} (V_{{1j}} )))\exp \left\{ { - \sum\limits_{{i = 1}}^{n} {k_{i} D_{j} H_{i} (x_{i} - V_{{1j}} )} } \right\}} \right]} \\ & \qquad \times \prod\limits_{{j = 1}}^{{N(x_{2} ) - N(x_{1} )}} {\left[ {(1 - P( \cup _{{i = 2}}^{n} A_{i} (V_{{2j}} )))\exp \left\{ { - \sum\limits_{{i = 2}}^{n} {k_{i} D_{{N(x_{1} ) + j}} H_{i} (x_{i} - V_{{2j}} )} } \right\}} \right]} \\ & \qquad \times \prod\limits_{{j = 1}}^{{N(x_{3} ) - N(x_{2} )}} {\left[ {(1 - P( \cup _{{i = 3}}^{n} A_{i} (V_{{3j}} )))\exp \left\{ { - \sum\limits_{{i = 3}}^{n} {k_{i} D_{{N(x_{2} ) + j}} H_{i} (x_{i} - V_{{3j}} )} } \right\}} \right]} \\ & \qquad \times \cdots \times \prod\limits_{{j = 1}}^{{N(x_{n} ) - N(x_{{n - 1}} )}} {\left[ {(1 - P( \cup _{{i = n}}^{n} A_{i} (V_{{nj}} )))\exp \left\{ { - k_{n} D_{{N(x_{{n - 1}} ) + j}} H_{n} (x_{n} - V_{{nj}} )} \right\}} \right]} \\ & \quad = \exp \left\{ { - \sum\limits_{{i = 1}}^{n} {\int\limits_{0}^{{x_{i} }} {r_{i} (s)ds} } } \right\} \\ & \qquad \times \prod\limits_{{k = 1}}^{n} {\left( {\prod\limits_{{j = 1}}^{{N(x_{k} ) - N(x_{{k - 1}} )}} {\left[ {(1 - P( \cup _{{i = k}}^{n} A_{i} (V_{{kj}} )))\exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} D_{{N(x_{{k - 1}} ) + j}} H_{i} (x_{i} - V_{{kj}} )} } \right\}} \right]} } \right)} , \\ \end{aligned} $$

where Vkj denotes the arrival time of the jth shock in the interval (xk−1, xk], \( x_{k - 1} < V_{k1} \le V_{k2} \le \cdots \le V_{{kN(x_{k} ) - N(x_{k - 1} )}} \le x_{k} ,\,k = 1,\;2, \ldots ,n, \) where x0 ≡ 0. Then, the joint survival function can be obtained by

$$ \begin{aligned} P(X_{1} > x_{1} ,X_{2} > x_{2} , \ldots ,X_{n} > x_{n} ) & = \exp \left\{ { - \sum\limits_{{i = 1}}^{n} {\int\limits_{0}^{{x_{i} }} {r_{i} (s)ds} } } \right\} \\ & \quad \times E\left[ {\prod\limits_{{k = 1}}^{n} {\left( {\prod\limits_{{j = 1}}^{{N(x_{k} ) - N(x_{{k - 1}} )}} {(1 - P( \cup _{{i = k}}^{n} A_{i} (V_{{kj}} )))} \cdot \exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} D_{{N(x_{{k - 1}} ) + j}} H_{i} (x_{i} - V_{{kj}} )} } \right\}} \right)} } \right] \\ & = \exp \left\{ { - \sum\limits_{{i = 1}}^{n} {\int\limits_{0}^{{x_{i} }} {r_{i} (s)ds} } } \right\} \\ & \quad \times E\left[ {E\left[ {\left. {\prod\limits_{{k = 1}}^{n} {\left( {\prod\limits_{{j = 1}}^{{N(x_{k} ) - N(x_{{k - 1}} )}} {(1 - P( \cup _{{i = k}}^{n} A_{i} (V_{{kj}} )))} \cdot \exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} D_{{N(x_{{k - 1}} ) + j}} H_{i} (x_{i} - V_{{kj}} )} } \right\}} \right)} } \right|N(x_{1} ),N(x_{2} ) - N(x_{1} ), \ldots ,N(x_{n} ) - N(x_{{n - 1}} )} \right]} \right], \\ \end{aligned} $$

where, due to the independent increments property of NHPP,

$$ \begin{aligned} & E\left[ {\left. {\prod\limits_{{k = 1}}^{n} {\left( {\prod\limits_{{j = 1}}^{{N(x_{k} ) - N(x_{{k - 1}} )}} {(1 - P( \cup _{{i = k}}^{n} A_{i} (V_{{kj}} )))} \cdot \exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} D_{{N(x_{{k - 1}} ) + j}} H_{i} (x_{i} - V_{{kj}} )} } \right\}} \right)} } \right|N(x_{1} ),N(x_{2} ) - N(x_{1} ), \ldots ,N(x_{n} ) - N(x_{{n - 1}} )} \right] \\ & \quad = \prod\limits_{{k = 1}}^{n} {E\left[ {\left. {\prod\limits_{{j = 1}}^{{N(x_{k} ) - N(x_{{k - 1}} )}} {(1 - P( \cup _{{i = k}}^{n} A_{i} (V_{{kj}} ))} ) \cdot \exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} D_{{N(x_{{k - 1}} ) + j}} H_{i} (x_{i} - V_{{kj}} )} } \right\}} \right|N(x_{k} ) - N(x_{{k - 1}} )} \right].} \\ \end{aligned} $$

If λ(0 +) > 0, then for all k = 1, 2,…,n, the joint distribution of \( V_{k1} ,\;V_{k2} , \ldots ,V_{{kN(x_{k} ) - N(x_{k - 1} )}} , \) given N(xk) − N(xk-1) = mk, is identical with the joint distribution of the order statistics \( V^{\prime}_{k(1)} \le V^{\prime}_{k(2)} \le \cdots \le V^{\prime}_{{k(m_{k} )}} \) of i.i.d. random variables \( V^{\prime}_{k1} ,V^{\prime}_{k2} , \cdots ,V^{\prime}_{{km{}_{k}}} , \) where the pdf of the common distribution of Vkj’s is given by λ(t)/[Λ(xk) − Λ(xk−1)], xk−1 < t ≤ xk (see, e.g., Cha and Mi 2007; Cha and Finkelstein 2011). Thus,

$$ \begin{aligned} & \prod\limits_{{k = 1}}^{n} {E\left[ {\left. {\prod\limits_{{j = 1}}^{{N(x_{k} ) - N(x_{{k - 1}} )}} {(1 - P( \cup _{{i = k}}^{n} A_{i} (V_{{kj}} ))} ) \cdot \exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} D_{{N(x_{{k - 1}} ) + j}} H_{i} (x_{i} - V_{{kj}} )} } \right\}} \right|N(x_{k} ) - N(x_{{k - 1}} ) = m_{k} } \right]} \\ & \quad = \prod\limits_{{k = 1}}^{n} {E\left[ {\prod\limits_{{j = 1}}^{{m_{k} }} {(1 - P( \cup _{{i = k}}^{n} A_{i} (V^{\prime}_{{k(j)}} )))} \cdot \exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} D_{j} H_{i} (x_{i} - V^{\prime}_{{k(j)}} )} } \right\}} \right]} \\ & \quad = \prod\limits_{{k = 1}}^{n} {E\left[ {\prod\limits_{{j = 1}}^{{m_{k} }} {(1 - P( \cup _{{i = k}}^{n} A_{i} (V^{\prime}_{{kj}} )))} \cdot \exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} D_{j} H_{i} (x_{i} - V^{\prime}_{{kj}} )} } \right\}} \right]} \\ & \quad = \prod\limits_{{k = 1}}^{n} {\left( {E\left[ {(1 - P( \cup _{{i = k}}^{n} A_{i} (V^{\prime}_{{k1}} ))) \cdot \exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} D_{1} H_{i} (x_{i} - V^{\prime}_{{k1}} )} } \right\}} \right]} \right)} ^{{m_{k} }} . \\ \end{aligned} $$

Since

$$ \begin{aligned} & E\left[ {\left. {(1 - P( \cup_{i = k}^{n} A_{i} (V^{\prime}_{k1} ))) \cdot \exp \left\{ { - \sum\limits_{i = k}^{n} {k_{i} D_{1} H_{i} (x_{i} - V^{\prime}_{k1} )} } \right\}} \right|V^{\prime}_{k1} = s\,} \right] \\ & \quad = E\left[ {(1 - P( \cup_{i = k}^{n} A_{i} (s))) \cdot \exp \left\{ { - \sum\limits_{i = k}^{n} {k_{i} D_{1} H_{i} (x_{i} - s)} } \right\}\,} \right] \\ & \quad = \int\limits_{0}^{\infty } {\left( {1 - P\left( { \cup_{i = k}^{n} A_{i} (s)} \right)} \right)} \cdot \exp \left\{ { - \sum\limits_{i = k}^{n} {k_{i} uH_{i} } \left( {x_{i} - s} \right)} \right\}f_{D} (u)du, \\ \end{aligned} $$

the unconditional expectation is obtained by

$$ \begin{aligned} & E\left[ {(1 - P( \cup _{{i = k}}^{n} A_{i} (V^{\prime}_{{k1}} ))) \cdot \exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} D_{1} H_{i} (x_{i} - V^{\prime}_{{k1}} )} } \right\}} \right] \\ & \quad = \int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {\int\limits_{0}^{\infty } {(1 - P( \cup _{{i = k}}^{n} A_{i} (s))) \cdot \exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}f_{D} (u)du} } \frac{{\lambda (s)}}{{\Lambda (x_{k} ) - \Lambda (x_{{k - 1}} )}}ds. \\ \end{aligned} $$

Finally, the joint survival function is derived by

$$ \begin{aligned} P(X_{1} > x_{1} ,X_{2} > x_{2} , \ldots ,X_{n} > x_{n} ) & \quad = \exp \left\{ { - \sum\limits_{{i = 1}}^{n} {\int\limits_{0}^{{x_{i} }} {r_{i} (s)ds} } } \right\} \times \sum\limits_{{m_{n} = 0}}^{\infty } {\sum\limits_{{m_{{n - 1}} = 0}}^{\infty } { \cdots \sum\limits_{{m_{2} = 0}}^{\infty } {\sum\limits_{{m_{1} = 0}}^{\infty } {} } } } \\ & \qquad \prod\limits_{{k = 1}}^{n} {\left[ {\left( {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {\int\limits_{0}^{\infty } {(1 - P( \cup _{{i = k}}^{n} A_{i} (s))) \cdot \exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}f_{D} (u)du} \frac{{\lambda (s)}}{{\Lambda (x_{k} ) - \Lambda (x_{{k - 1}} )}}} ds} \right)^{{m_{k} }} \times \frac{{[\Lambda (x_{k} ) - \Lambda (x_{{k - 1}} )]^{{m_{k} }} }}{{m_{k} !}}\exp \{ - [\Lambda (x_{k} ) - \Lambda (x_{{k - 1}} )\} } \right]} \\ & \quad = \exp \left\{ { - \sum\limits_{{i = 1}}^{n} {\int\limits_{0}^{{x_{i} }} {r_{i} (s)ds} } } \right\} \\ & \qquad \times \exp \left\{ { - \int\limits_{0}^{{x_{1} }} {\left( {1 - \int\limits_{0}^{\infty } {(1 - P( \cup _{{i = 1}}^{n} A_{i} (s)))\exp \left\{ { - \sum\limits_{{i = 1}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}f_{D} (u)du} } \right)\lambda (s)} ds} \right\} \\ & \quad \times \exp \left( { - \int\limits_{{x_{1} }}^{{x_{2} }} {\left( {1 - \int\limits_{0}^{\infty } {(1 - P( \cup _{{i = 2}}^{n} A_{i} (s)))\exp \left\{ { - \sum\limits_{{i = 2}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}f_{D} (u)du} } \right)} \lambda (s)ds} \right) \\ & \qquad \times \exp \left( { - \int\limits_{{x_{2} }}^{{x_{3} }} {\left( {1 - \int\limits_{0}^{\infty } {(1 - P( \cup _{{i = 3}}^{n} A_{i} (s)))\exp \left\{ { - \sum\limits_{{i = 3}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}f_{D} (u)du} } \right)} \lambda (s)ds} \right) \\ & \qquad \times \cdots \times \exp \left( { - \int\limits_{{x_{{n - 1}} }}^{{x_{n} }} {\left( {1 - \int\limits_{0}^{\infty } {(1 - P( \cup _{{i = n}}^{n} A_{i} (s)))\exp \left\{ { - k_{n} uH_{n} (x_{n} - s)} \right\}f_{D} (u)du} } \right)} \lambda (s)ds} \right) \\ & \quad = \exp \left\{ { - \sum\limits_{{i = 1}}^{n} {\int\limits_{0}^{{x_{i} }} {r_{i} (s)ds} } } \right\} \\ & \qquad \times \exp \left\{ { - \int\limits_{0}^{{x_{{(1)}} }} {\left( {1 - \int\limits_{0}^{\infty } {(1 - P( \cup _{{i \in S(x_{{(0)}} )}} A_{i} (s)))\exp \left\{ { - \sum\limits_{{i \in S(x_{{(0)}} )}} {k_{i} uH_{i} (x_{i} - s)} } \right\}f_{D} (u)du} } \right)\lambda (s)} ds} \right\} \\ & \qquad \times \exp \left( { - \int\limits_{{x_{{(1)}} }}^{{x_{{(2)}} }} {\left( {1 - \int\limits_{0}^{\infty } {(1 - P( \cup _{{i \in S(x_{{(1)}} )}} A_{i} (s)))\exp \left\{ { - \sum\limits_{{i \in S(x_{{(1)}} )}} {k_{i} uH_{i} (x_{i} - s)} } \right\}f_{D} (u)du} } \right)} \lambda (s)ds} \right) \\ & \qquad \times \exp \left( { - \int\limits_{{x_{{(2)}} }}^{{x_{{(3)}} }} {\left( {1 - \int\limits_{0}^{\infty } {(1 - P( \cup _{{i \in S(x_{{(1)}} ,x_{{(2)}} )}} A_{i} (s)))\exp \left\{ { - \sum\limits_{{i \in S(x_{{(1)}} ,x_{{(2)}} )}} {k_{i} uH_{i} (x_{i} - s)} } \right\}f_{D} (u)du} } \right)} \lambda (s)ds} \right) \times \cdots \\ & \qquad \times \exp \left( { - \int\limits_{{x_{{(n - 1)}} }}^{{x_{{(n)}} }} {\left( {1 - \int\limits_{0}^{\infty } {(1 - P( \cup _{{i \in S(x_{{(1)}} ,x_{{(2)}} , \ldots ,x_{{(n - 1)}} )}} A_{i} (s)))\exp \left\{ { - \sum\limits_{{i \in S(x_{{(1)}} ,x_{{(2)}} , \ldots ,x_{{(n - 1)}} )}} {k_{i} uH_{i} (x_{i} - s)} } \right\}f_{D} (u)du} } \right)} \lambda (s)ds} \right). \\ \end{aligned} $$

The results for the other cases can be obtained symmetrically.

Proof of Theorem 5

Due to Proposition 1, it is sufficient to show that the proposed class of distributions possesses multivariate IFR property on each OPS. Without loss of generality, we consider only the case when x1 ≤ x2 ≤···≤ xn. Note that

$$ \begin{aligned} & \frac{{P(X_{1} > x_{1} + t,\;X_{2} > x_{2} + t, \ldots ,X_{n} > x_{n} + t)}}{{P(X_{1} > x_{1} ,\;X_{2} > x_{2} , \ldots ,X_{n} > x_{n} )}} \\ & \quad = \exp \left\{ { - \sum\limits_{{i = 1}}^{n} {\int\limits_{{x_{i} }}^{{x_{i} + t}} {r_{i} (s)ds} } } \right\} \\ & \quad \quad \times \exp \left\{ { - \int\limits_{0}^{\infty } {\left[ {\int\limits_{0}^{{x_{1} + t}} {\left( {1 - \left( {1 - \sum\limits_{{i = 1}}^{{n + 1}} {p_{i} (s)} } \right)\exp \left\{ { - \sum\limits_{{i = 1}}^{n} {k_{i} uH_{i} (x_{i} + t - s)} } \right\}} \right)\lambda (s)ds} } \right.} } \right. \\ & \left. {\left. { \quad \quad - \int\limits_{0}^{{x_{1} }} {\left( {1 - \left( {1 - \sum\limits_{{i = 1}}^{{n + 1}} {p_{i} (s)} } \right)\exp \left\{ { - \sum\limits_{{i = 1}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} \right)\lambda (s)} ds} \right]f_{D} (u)du} \right\} \\ & \quad \quad \times \prod\limits_{{k = 2}}^{n} {\exp \left\{ { - \int\limits_{0}^{\infty } {\left[ {\int\limits_{{x_{{k - 1}} + t}}^{{x_{k} + t}} {\left( {1 - \left( {1 - \sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s)} } \right)\exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} uH_{i} (x_{i} + t - s)} } \right\}} \right)\lambda (s)ds} } \right.} } \right.} \\ & \left. {\left. { \quad \quad - \int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {\left( {1 - \left( {1 - \sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s)} } \right)\exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} \right)\lambda (s)} ds} \right]f_{D} (u)du} \right\}. \\ \end{aligned} $$

From the condition that ri(t), i = 1, 2,…,n are increasing for t ≥ 0, it is clear that \( \exp \left\{ { - \sum\nolimits_{i = 1}^{n} {\int_{{x_{i} }}^{{x_{i} + t}} {r_{i} (s)ds} } } \right\} \) is decreasing in x1, x2,…,xn ≥ 0 for all t ≥ 0. Let

$$ \begin{aligned} & h(x_{1} ,\;x_{2} , \ldots ,x_{n} ;\;t) \equiv \int\limits_{0}^{{x_{1} + t}} {\left( {1 - \left( {1 - \sum\limits_{i = 1}^{n + 1} {p_{i} (s)} } \right)\exp \left\{ { - \sum\limits_{i = 1}^{n} {k_{i} uH_{i} (x_{i} + t - s)} } \right\}} \right)\lambda (s)} ds \\ & \quad - \int\limits_{0}^{{x_{1} }} {\left( {1 - \left( {1 - \sum\limits_{i = 1}^{n + 1} {p_{i} (s)} } \right)\exp \left\{ { - \sum\limits_{i = 1}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} \right)\lambda (s)} ds \\ & \quad + \sum\limits_{k = 2}^{n} {\left[ {\int\limits_{{x_{k - 1} + t}}^{{x_{k} + t}} {\left( {1 - \left( {1 - \sum\limits_{i = k}^{n + 1} {p_{i} (s)} } \right)\exp \left\{ { - \sum\limits_{i = k}^{n} {k_{i} uH_{i} (x_{i} + t - s)} } \right\}} \right)\lambda (s)} ds} \right.} \\ & \left. {\quad - \int\limits_{{x_{k - 1} }}^{{x_{k} }} {\left( {1 - \left( {1 - \sum\limits_{i = k}^{n + 1} {p_{i} (s)} } \right)\exp \left\{ { - \sum\limits_{i = k}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} \right)\lambda (s)} ds} \right]. \\ \end{aligned} $$

Then, to prove that \( \frac{{P(X_{1} > x_{1} + t,\;X_{2} > x_{2} + t, \ldots ,X_{n} > x_{n} + t)}}{{P(X_{1} > x_{1} ,\;X_{2} > x_{2} , \ldots ,X_{n} > x_{n} )}} \) is decreasing in x1, x2,…,xn ≥ 0 for all t ≥ 0, we need to show that h(x1, x2,…,xn; t) is increasing in x1, x2,…,xn ≥ 0, for each fixed u, t ≥ 0. Observe that

$$ \begin{aligned} & h(x_{1} ,x_{2} , \ldots ,x_{n} ;t) = \int\limits_{{ - t}}^{{x_{1} }} {\left( {1-\left( {1 - \sum\limits_{{i = 1}}^{{n + 1}} {p_{i} (s + t)} } \right)1 - \exp \left\{ { - \sum\limits_{{i = 1}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} \right)\lambda (s + t)} ds \\ & \quad - \int\limits_{0}^{{x_{1} }} {\left( {1 - \left( {1 - \sum\limits_{{i = 1}}^{{n + 1}} {p_{i} (s)} } \right)\exp \left\{ { - \sum\limits_{{i = 1}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} \right)\lambda (s)} ds \\ & \quad + \sum\limits_{{k = 2}}^{n} {\left[ {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {\left( {1 - \left( {1 - \sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s + t)} } \right)\exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} \right)\lambda (s + t)} ds} \right.} \\ & \left. {\quad - \int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {\left( {1 - \left( {1 - \sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s)} } \right)\exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} \right)\lambda (s)} ds} \right] \\ & \quad = - \int\limits_{0}^{{ - t}} {\left( {1 - \left( {1 - \sum\limits_{{i = 1}}^{{n + 1}} {p_{i} (s + t)} } \right)\exp \left\{ { - \sum\limits_{{i = 1}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} \right)\lambda (s + t)} ds \\ & \quad + \int\limits_{0}^{{x_{1} }} {\left( {1 - \left( {1 - \sum\limits_{{i = 1}}^{{n + 1}} {p_{i} (s + t)} } \right)\exp \left\{ { - \sum\limits_{{i = 1}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} \right)\lambda (s + t)} ds \\ & \quad - \int\limits_{0}^{{x_{1} }} {\left( {1 - \left( {1 - \sum\limits_{{i = 1}}^{{n + 1}} {p_{i} (s)} } \right)\exp \left\{ { - \sum\limits_{{i = 1}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} \right)\lambda (s)} ds \\ & \quad + \sum\limits_{{k = 2}}^{n} {\left[ {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {\left( {1 - \left( {1 - \sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s + t)} } \right)\exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} \right)\lambda (s + t)} ds} \right.} \\ & \quad \left. { - \int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {\left( {1 - \left( {1 - \sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s)} } \right)\exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} \right)\lambda (s)} ds} \right] \\ & \quad = \int\limits_{0}^{t} {\left( {1 - p_{0} (t - s)\exp \left\{ { - \sum\limits_{{i = 1}}^{n} {k_{i} uH_{i} (x_{i} + s)} } \right\}} \right)\lambda (t - s)} ds \\ & \quad + \int\limits_{0}^{{x_{1} }} {\{ \lambda (s + t) - \lambda (s)\} - \left[ {p_{0} (s + t)\lambda (s + t) - p_{0} (s)\lambda (s)} \right]\exp \left\{ { - \sum\limits_{{i = 1}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} ds \\ & \quad + \sum\limits_{{k = 2}}^{n} {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {\{ \lambda (s + t) - \lambda (s)\} - \left[ {\left( {1 - \sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s + t)} } \right)\lambda (s + t) - \left( {1 - \sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s)} } \right)\lambda (s)} \right]\exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\}} ds} . \\ \end{aligned} $$

Let

$$ h_{0} (x_{1} ,\;x_{2} , \ldots , x_{n} ,\;s;\;t) \equiv \left( {1 - p_{0} (t - s)\exp \left\{ {\sum\limits_{i = 1}^{n} {k_{i} uH_{i} \left( {x_{i} + s} \right)} } \right\}} \right)\lambda (t - s), $$

and

$$ \begin{aligned} h_{k} (x_{1} ,x_{2} , \ldots ,x_{n} ,s;t) & \equiv \{ \lambda (s + t) - \lambda (s)\} \\ & \quad - \left[ {\left( {1 - \sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s + t)} } \right)\lambda (s + t) - \left( {1 - \sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s)} } \right)\lambda (s)} \right] \\ & \quad \times \exp \left\{ { - \sum\limits_{{i = k}}^{n} {k_{i} uH_{i} (x_{i} - s)} } \right\},\quad k = 1,2, \ldots ,n. \\ \end{aligned} $$

Then,

$$ \begin{aligned} h(x_{1} ,\;x_{2} , \ldots ,x_{n} ;\;t) & = \int\limits_{0}^{t} {h_{0} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds \\ & \quad + \sum\limits_{k = 1}^{n} {\int\limits_{{x_{k - 1} }}^{{x_{k} }} {h_{k} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} } ds,\end{aligned} $$

where x0 ≡ 0, and it is clear that h0(x1, x2,…,xn, s; t) is increasing in x1, x2,…,xn ≥ 0, for each fixed s, t ≥ 0. It is now necessary to verify that

$$ \varphi (x_{1} ,\;x_{2} , \ldots ,x_{n} ;\;t) \equiv \sum\limits_{k = 1}^{n} {\int\limits_{{x_{k - 1} }}^{{x_{k} }} {h_{k} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} } ds $$

is increasing in x1, x2,…,xn ≥ 0. Note that if pi(t), i = 1, 2,…,n + 1, and λ(t) are increasing for t ≥ 0, and the condition (11) holds, then, for each fixed s, t ≥ 0,

$$ \begin{aligned} & \left[ {\left( {1 - \sum\limits_{i = k}^{n + 1} {p_{i} (s + t)} } \right)\lambda (s + t) - \left( {1 - \sum\limits_{i = k}^{n + 1} {p_{i} (s)} } \right)\lambda (s)} \right] \\ & \quad = \left[ {\left( { \sum\limits_{i = 0}^{k - 1} {p_{i} (s + t)} } \right)\lambda (s + t) - \left( { \sum\limits_{i = 0}^{k - 1} {p_{i} (s)} } \right)\lambda (s)} \right] \ge 0,\quad {\text{for}}\;{\text{all}}\;k = 1,\;2, \ldots , n. \\ \end{aligned} $$

Then, under the given conditions, it is obvious that hi(x1, x2,…,xn, s; t), i = 1, 2,…,n are increasing in x1, x2,…,xn ≥ 0, for each fixed s, t ≥ 0. In addition, it can be shown that hi(x1, x2,…,xn, s; t) ≥ hi+1(x1, x2,…,xn, s; t), for i = 1, 2,…,n − 1, for all s, t ≥ 0, for each x1, x2,…,xn ≥ 0. Furthermore, under the given conditions, we have that hi(x1, x2,…,xn, s; t) ≥ 0, i = 2, 3,…,n, for all s, t ≥ 0, for each x1, x2,…,xn ≥ 0, because

$$ \begin{aligned} h_{k} (x_{1} ,x_{2} , \ldots ,x_{n} ,s;t) & \ge \{ \lambda (s + t) - \lambda (s)\} - \left[ {\left( {1 - \sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s + t)} } \right)\lambda (s + t) - \left( {1 - \sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s)} } \right)\lambda (s)} \right] \\ & = \left( {\sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s + t)} } \right)\lambda (s + t) - \left( {\sum\limits_{{i = k}}^{{n + 1}} {p_{i} (s)} } \right)\lambda (s) \\ \end{aligned} $$

and

$$ \frac{\lambda (s + t)}{\lambda (s)} \ge \frac{{\sum\nolimits_{i = k}^{n + 1} {p_{i} (s)} }}{{\sum\nolimits_{i = k}^{n + 1} {p_{i} (s + t)} }},\quad k = 2,\;3, \ldots ,n,\quad {\text{for}}\;{\text{all}}\;s,\;t \ge 0. $$

Choose \( x_{1}^{\prime},\,x_{2}^{\prime}, \ldots ,x_{n}^{\prime}\ge 0 \) such that \( x_{1}^{\prime}\le x_{2}^{\prime}\le\cdots\le x_{n}^{\prime} \) and \( x_{i}\le x_{i}^{\prime}, \) i = 1, 2,…,n. Now, to complete the proof, we need to show that the equality

$$ \varphi (x_{1} ,\;x_{2} , \ldots ,x_{n} ;\;t) \le \phi (x^{\prime}_{1} ,\;x^{\prime}_{2} , \ldots ,x^{\prime}_{n} ;\;t) $$
(12)

holds for each fixed t ≥ 0. For this, we will use the principle of mathematical induction as follows. Let

$$ \varphi_{m} (x_{1} ,\;x_{2} , \ldots ,x_{n} ;\;t) \equiv \sum\limits_{k = 1}^{m} {\int\limits_{{x_{k - 1} }}^{{x_{k} }} {h_{k} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} } ds,\quad m = 2,\;3, \ldots ,n. , $$

Then inequality (12) is equivalent to φn(x1, x2,…,xn; t) ≤ φn\( (x_{1}^{\prime},\,x_{2}^{\prime},\ldots,x_{n}^{\prime}; t ).\)

Step 1 we prove that φ2(x1, x2,…,xn; t) ≤ φ2(x 1 , x 2 ,…,x n ; t), holds (for the case m = 2).

(i) First consider the case when x1 ≤ x 1  ≤ x2 ≤ x 2 . Then we have

$$ \begin{aligned} & \phi_{2} (x_{1} ,\;x_{2} , \ldots ,x_{n} ;\;t) = \int\limits_{0}^{{x_{1} }} {h_{1} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x_{1} }}^{{x_{2} }} {h_{2} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)ds} \\ & \quad = \int\limits_{0}^{{x_{1} }} {h_{1} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x_{1} }}^{{x^{\prime}_{1} }} {h_{2} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x^{\prime}_{1} }}^{{x_{2} }} {h_{2} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)ds} \\ & \quad \le \int\limits_{0}^{{x_{1} }} {h_{1} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x_{1} }}^{{x^{\prime}_{1} }} {h_{1} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)ds} + \int\limits_{{x^{\prime}_{1} }}^{{x_{2} }} {h_{2} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x_{2} }}^{{x^{\prime}_{2} }} {h_{2} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)ds} \\ & \quad = \int\limits_{0}^{{x^{\prime}_{1} }} {h_{1} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x^{\prime}_{1} }}^{{x^{\prime}_{2} }} {h_{2} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds \\ & \quad \le \int\limits_{0}^{{x^{\prime}_{1} }} {h_{1} (x^{\prime}_{1} ,\;x^{\prime}_{2} , \ldots ,x^{\prime}_{n} ,\;s;\;t)} ds + \int\limits_{{x^{\prime}_{1} }}^{{x^{\prime}_{2} }} {h_{2} (x^{\prime}_{1} ,\;x^{\prime}_{2} , \ldots ,x^{\prime}_{n} ,\;s;\;t)} ds = \phi_{2} (x^{\prime}_{1} ,\;x^{\prime}_{2} , \ldots ,x^{\prime}_{n} ;\;t). \\ \end{aligned} $$

(ii) Now consider the case when \( x_{1}\le x_{2}\le x_{1}^{\prime}\le x_{2}^{\prime}.\) In this case,\( \begin{aligned} & \phi_{2} (x_{1} ,\;x_{2} , \ldots ,x_{n} ;\;t) = \int\limits_{0}^{{x_{1} }} {h_{1} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x_{1} }}^{{x_{2} }} {h_{2} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)ds} \\ & \quad \le \int\limits_{0}^{{x_{1} }} {h_{1} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x_{1} }}^{{x_{2} }} {h_{2} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)ds} + \int\limits_{{x_{2} }}^{{x^{\prime}_{1} }} {h_{2} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)ds} + \int\limits_{{x^{\prime}_{1} }}^{{x^{\prime}_{2} }} {h_{2} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)ds} \\ & \quad \le \int\limits_{0}^{{x_{1} }} {h_{1} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x_{1} }}^{{x_{2} }} {h_{1} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)ds} + \int\limits_{{x_{2} }}^{{x^{\prime}_{1} }} {h_{1} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)ds} + \int\limits_{{x^{\prime}_{1} }}^{{x^{\prime}_{2} }} {h_{2} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)ds} \\ & \quad \le \int\limits_{0}^{{x^{\prime}_{1} }} {h_{1} (x^{\prime}_{1} ,\;x^{\prime}_{2} , \ldots ,x^{\prime}_{n} ,\;s;\;t)} ds + \int\limits_{{x^{\prime}_{1} }}^{{x^{\prime}_{2} }} {h_{2} (x^{\prime}_{1} ,\;x^{\prime}_{2} , \ldots ,x^{\prime},\;s;\;t)ds} = \phi_{2} (x^{\prime}_{1} ,\;x^{\prime}_{2} , \ldots ,x^{\prime},\;s;\;t). \\ \end{aligned} \) Hence, the equality φ2(x1, x2,…,xn; t) ≤ φ2\( (x_{1}^{\prime},\,x_{2}^{\prime},\ldots,x_{n}^{\prime}; t )\) holds.

Step 2 assume now that φr(x1, x2,…,xn; t) ≤ φr\( (x_{1}^{\prime},\,x_{2}^{\prime},\ldots,x_{n}^{\prime}; t )\) holds (for the case m = r), where 2 ≤ r ≤ n − 1. Then we prove that φr+1(x1, x2,…,xn; t) ≤ φr+1\( (x_{1}^{\prime},\,x_{2}^{\prime},\ldots,x_{n}^{\prime}; t ),\) holds (for the case m = r + 1).

(i) First consider the case when \( x_{r}\le x_{r}^{\prime}\le x_{r+1}\le x_{r+1}^{\prime}.\) In this case, we have

$$ \begin{aligned} & \phi _{{r + 1}} (x_{1} ,\;x_{2} , \ldots ,x_{n} ;\;t) = \sum\limits_{{k = 1}}^{r} {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {h_{i} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds} + \int\limits_{{x_{r} }}^{{x_{{r + 1}} }} {h_{{r + 1}} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds \\ & \quad = \sum\limits_{{k = 1}}^{r} {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {h_{i} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds} + \int\limits_{{x_{r} }}^{{x^{\prime}_{r} }} {h_{{r + 1}} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x^{\prime}_{r} }}^{{x_{{r + 1}} }} {h_{{r + 1}} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds \\ & \quad = \sum\limits_{{k = 1}}^{{r - 1}} {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {h_{i} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds} + \int\limits_{{x_{{r - 1}} }}^{{x_{r} }} {h_{r} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds \\ & \quad \quad + \int\limits_{{x_{r} }}^{{x^{\prime}_{r} }} {h_{{r + 1}} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x^{\prime}_{r} }}^{{x_{{r + 1}} }} {h_{{r + 1}} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds \\ & \quad \le \sum\limits_{{k = 1}}^{{r - 1}} {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {h_{i} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds} + \int\limits_{{x_{{r - 1}} }}^{{x_{r} }} {h_{r} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds \\ & \quad \quad + \int\limits_{{x_{r} }}^{{x^{\prime}_{r} }} {h_{r} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x^{\prime}_{r} }}^{{x_{{r + 1}} }} {h_{{r + 1}} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x_{{r + 1}} }}^{{x^{\prime}_{{r + 1}} }} {h_{{r + 1}} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds \\ & \quad = \sum\limits_{{k = 1}}^{{r - 1}} {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {h_{i} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds} + \int\limits_{{x_{{r - 1}} }}^{{x^{\prime}_{r} }} {h_{r} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds + \int\limits_{{x^{\prime}_{r} }}^{{x^{\prime}_{{r + 1}} }} {h_{{r + 1}} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds \\ & \quad \le \sum\limits_{{k = 1}}^{{r - 1}} {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {h_{i} (x_{1} , \ldots ,x_{{r - 1}} ,\;x^{\prime}_{r} ,\;x_{{r + 1}} , \ldots ,x_{n} ,\;s;\;t)} ds} + \int\limits_{{x_{{r - 1}} }}^{{x^{\prime}_{r} }} {h_{r} (x_{1} , \ldots ,x_{{r - 1}} ,\;x^{\prime}_{r} ,\;x_{{r + 1}} , \ldots ,x_{n} ,\;s;\;t)} ds \\ & \quad \quad + \int\limits_{{x^{\prime}_{r} }}^{{x^{\prime}_{{r + 1}} }} {h_{{r + 1}} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds \\ & \quad = \phi _{r} (x_{1} , \ldots ,x_{{r - 1}} ,\;x^{\prime}_{r} ,\;x_{{r + 1}} , \ldots ,x_{n} ;\;t) + \int\limits_{{x^{\prime}_{r} }}^{{x^{\prime}_{{r + 1}} }} {h_{{r + 1}} (x_{1} ,\;x_{2} , \ldots ,x_{n} ,\;s;\;t)} ds \\ & \quad \le \phi _{r} (x^{\prime}_{1} , \ldots ,x^{\prime}_{{r - 1}} ,\;x^{\prime}_{r} ,\;x^{\prime}_{{r + 1}} , \ldots ,x^{\prime}_{n} ;\;t) + \int\limits_{{x^{\prime}_{r} }}^{{x^{\prime}_{{r + 1}} }} {h_{{r + 1}} (x^{\prime}_{1} ,\;x^{\prime}_{2} , \ldots ,x^{\prime}_{n} ,\;s;\;t)} ds \\ & \quad = \phi _{{r + 1}} (x^{\prime}_{1} , \ldots ,x^{\prime}_{{r - 1}} ,\;x^{\prime}_{r} ,\;x^{\prime}_{{r + 1}} , \ldots ,x^{\prime}_{n} ;\;t), \\ \end{aligned} $$

which implies that the equality φr+1(x1, x2,…,xn; t) ≤ φr+1\( (x_{1}^{\prime},\,x_{2}^{\prime},\ldots,x_{n}^{\prime}; t )\) holds.

(ii) Now consider the case when \( x_{r}\le x_{r+1}\le x_{r}^{\prime}\le x_{r+1}^{\prime}.\) In this case, we have

$$\begin{aligned} & \phi _{{r + 1}} (x_{1} ,x_{2} , \ldots ,x_{n} ;t) = \sum\limits_{{k = 1}}^{r} {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {h_{i} (x_{1} ,x_{2} , \ldots ,x_{n} ,s;t)} ds} + \int\limits_{{x_{r} }}^{{x_{{r + 1}} }} {h_{{r + 1}} (x_{1} ,x_{2} , \ldots ,x_{n} ,s;t)} ds \\ & \quad \le \sum\limits_{{k = 1}}^{r} {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {h_{i} (x_{1} ,x_{2} , \ldots ,x_{n} ,s;t)} ds} + \int\limits_{{x_{r} }}^{{x_{{r + 1}} }} {h_{{r + 1}} (x_{1} ,x_{2} , \ldots ,x_{n} ,s;t)} ds \\ & \quad + \int\limits_{{x_{{r + 1}} }}^{{x_{r} '}} {h_{{r + 1}} (x_{1} ,x_{2} , \ldots ,x_{n} ,s;t)} ds + \int\limits_{{x_{r} '}}^{{x_{{r + 1}} '}} {h_{{r + 1}} (x_{1} ,x_{2} , \ldots ,x_{n} ,s;t)} ds \\ & \quad \le \sum\limits_{{k = 1}}^{r} {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {h_{i} (x_{1} ,x_{2} , \ldots ,x_{n} ,s;t)} ds} + \int\limits_{{x_{r} }}^{{x_{{r + 1}} }} {h_{r} (x_{1} ,x_{2} , \ldots ,x_{n} ,s;t)} ds \\ & \quad + \int\limits_{{x_{{r + 1}} }}^{{x_{r} '}} {h_{r} (x_{1} ,x_{2} , \ldots ,x_{n} ,s;t)} ds + \int\limits_{{x_{r} '}}^{{x_{{r + 1}} '}} {h_{{r + 1}} (x_{1} ,x_{2} , \ldots ,x_{n} ,s;t)} ds \\ & \quad \le \sum\limits_{{k = 1}}^{r} {\int\limits_{{x_{{k - 1}} }}^{{x_{k} }} {h_{i} (x_{1} , \ldots ,x_{{r - 1}} ,x^{\prime}_{r} ,x_{{r + 1}} , \ldots ,x_{n} ,s;t)} ds} + \int\limits_{{x_{r} }}^{{x_{{r + 1}} }} {h_{r} (x_{1} , \ldots ,x_{{r - 1}} ,x^{\prime}_{r} ,x_{{r + 1}} , \ldots ,x_{n} ,s;t)} ds \\ & \quad + \int\limits_{{x_{{r + 1}} }}^{{x_{r} '}} {h_{r} (x_{1} , \ldots ,x_{{r - 1}} ,x^{\prime}_{r} ,x_{{r + 1}} , \ldots ,x_{n} ,s;t)} ds + \int\limits_{{x_{r} '}}^{{x_{{r + 1}} '}} {h_{{r + 1}} (x_{1} ,x_{2} , \ldots ,x_{n} ,s;t)} ds \\ & \quad \le \phi _{r} (x_{1} , \ldots ,x_{{r - 1}} ,x^{\prime}_{r} ,x_{{r + 1}} , \ldots ,x_{n} ;t) + \int\limits_{{x_{r} '}}^{{x_{{r + 1}} '}} {h_{{r + 1}} (x_{1} , \ldots ,x_{{r - 1}} ,x^{\prime}_{r} ,x_{{r + 1}} , \ldots ,x_{n} ,s;t)} ds \\ & \quad \le \phi _{r} (x^{\prime}_{1} , \ldots ,x^{\prime}_{{r - 1}} ,x^{\prime}_{r} ,x^{\prime}_{{r + 1}} , \ldots ,x^{\prime}_{n} ;t) + \int\limits_{{x_{r} '}}^{{x_{{r + 1}} '}} {h_{{r + 1}} (x^{\prime}_{1} , \ldots ,x^{\prime}_{{r - 1}} ,x^{\prime}_{r} ,x^{\prime}_{{r + 1}} , \ldots ,x^{\prime}_{n} ;s,t)} ds \\ & \quad = \phi _{{r + 1}} (x^{\prime}_{1} , \ldots ,x^{\prime}_{{r - 1}} ,x^{\prime}_{r} ,x^{\prime}_{{r + 1}} , \ldots ,x^{\prime}_{n} ;t), \\ \end{aligned}$$

which implies that the equality φr+1(x1, x2,…,xn; t) ≤ φr+1(x 1 , x 2 ,…,x n ; t).

Therefore, by mathematical induction, it holds that φm(x1, x2,…,xn; t) ≤ φm(x 1 , x 2 ,…,x n ; t), for all m, m = 2, 3,…,n, which completes the proof. The other cases can be shown symmetrically.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Cha, J.H. On a multivariate IFR and positively dependent lifetime model induced by multiple shot-noise processes. Stat Papers 62, 561–590 (2021). https://doi.org/10.1007/s00362-019-01099-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01099-7

Keywords

Navigation