Skip to main content
Log in

Dimension reduction for functional regression with a binary response

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We propose here a novel functional inverse regression method (i.e., functional surrogate assisted slicing) for functional data with binary responses. Previously developed method (e.g., functional sliced inverse regression) can detect no more than one direction in the functional sufficient dimension reduction subspace. In contrast, the proposed new method can detect multiple directions. The population properties of the proposed method is established. Furthermore, we propose a new method to estimate the functional central space which do not need the inverse of the covariance operator. To practically determine the structure dimension of the functional sufficient dimension reduction subspace, a modified Bayesian information criterion method is proposed. Numerical studies based on both simulated and real data sets are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amato U, Antoniadis A, Feis ID (2006) Dimension reduction in functional regression with applications. Comput Stat Data Anal 50:2422–2446

    Article  MathSciNet  Google Scholar 

  • Bosq D (1991) Modelization, non-parametric estimation and prediction for continuous time processes. In: Roussas G (ed) Nonparametric functional estimation and related topics, NATO, ASI Series, pp 509–529

  • Carroll R, Li KC (1995) Binary regression in dimension reduction models: a new look at treatment comparisons. Stat Sin 5:667–688

    MATH  Google Scholar 

  • Carey J, Liedo P, Müller HG, Wang JL, Chiou JM (1998a) Relation of age patters of fecundity to mortality, longevity and lifetime reproduction in a large cohort of Mediterranean fruit fly females. J Gerontol Biol Sci 53:245–251

    Article  Google Scholar 

  • Carey JR, Liedo P, Müller HG, Wang JL, Vaupel JW (1998b) Dual modes of aging in Mediterranean fruit fly females. Science 281:996–998

    Article  Google Scholar 

  • Cook RD (1998a) Principal Hessian directions revisited. J Am Stat Assoc 93:84–94

    Article  MathSciNet  Google Scholar 

  • Cook RD (1998b) Regression graphics. Wiley, New York

    Book  Google Scholar 

  • Cook RD, Lee H (1999) Dimension reduction in binary response regression. J Am Stat Assoc 94:1187–1200

    Article  MathSciNet  Google Scholar 

  • Cook RD, Weisberg S (1991) Discussion of “sliced inverse regression for dimension reduction”. J Am Stat Assoc 86:28–33

    MATH  Google Scholar 

  • Cook RD, Li B, Chiaromonte F (2007) Dimension reduction in regression without matrix inversion. Biomatrika 94:569–584

    Article  MathSciNet  Google Scholar 

  • Dauxois J, Ferré L, Yao AF (2001) Un mod\(\grave{e}\)semi-paramétrique pour variable aléatoire hilberienne. C. R. Accad. Sci. Pairs t. 327 série I, pp 947–952

  • Delaigle A, Hall P (2012) Methodology and theory for partial least squares applied to functional data. Ann Stat 40:322–352

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, New York

    MATH  Google Scholar 

  • Ferré L, Yao AF (2003) Functional sliced inverse regression analysis. Statistics 37:475–488

    Article  MathSciNet  Google Scholar 

  • Ferré L, Yao AF (2005) Smoothed functional inverse regression. Stat Sin 15:665–683

    MathSciNet  MATH  Google Scholar 

  • Hall P, Müller HG, Wang JL (2006) Properties of principal component methods for functional and longitudinal data analysis. Ann Stat 34:1493–1517

    Article  MathSciNet  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Book  Google Scholar 

  • Hsing T, Ren H (2009) An RKHS formulation of the inverse regression dimension reduction problem. Ann Stat 37:726–755

    Article  MathSciNet  Google Scholar 

  • Li KC (1991) Sliced inverse regression for dimension reduction (with discussion). J Am Stat Assoc 86:316–342

    Article  Google Scholar 

  • Lian H, Li GR (2014) Series expansion for functional sufficient dimension reduction. J Multivar Anal 124:150–165

    Article  MathSciNet  Google Scholar 

  • Müller HG, Stadtmüller U (2005) Generalized functional linear models. Ann Stat 33:774–805

    Article  MathSciNet  Google Scholar 

  • Müller HG, Chiou JM, Carey JR, Wang JL (2002) Fertility and life span: late children enhance female longevity. J Gerontol 57:202–206

    Article  Google Scholar 

  • Partridge L, Harvey PH (1985) Costs of reproduction. Nature 316:20–21

    Article  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional Data Analysis, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Riesz F, Nagy B (1955) Functional analysis. Ungar, New York

    MATH  Google Scholar 

  • Wang GC, Lin N, Zhang BX (2013) Dimension reduction in functional regression using mixed data canonical correlation analysis. Stat Interface 6:187–196

    Article  MathSciNet  Google Scholar 

  • Wang GC, Zhou Y, Feng XN, Zhang BX (2015) The hybrid method of FSIR and FSAVE for functional effective dimension reduction. Comput Stat Data Anal 91:64–77

    Article  MathSciNet  Google Scholar 

  • Wang GC, Zhou JJ, Wu WQ, Chen M (2017) Robust functional sliced inverse regression. Stat Papers 58:227–245

    Article  MathSciNet  Google Scholar 

  • Yao F, M\(\ddot{u}\)ller HG, Wang JL, (2005) Functional data analysis for sparse longitudinal data. J Am Stat Assoc 100:577–590

  • Zhang JT, Chen JW (2007) Statistical inferences for functional data. Ann Stat 35:1052–1079

    Article  MathSciNet  Google Scholar 

  • Zhu LX, Miao BQ, Peng H (2006) On sliced inverse regression with high-dimensional covariates. J Am Stat Assoc 101:630–643

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the Editor, Associate Editor, and a reviewer for their constructive comments and suggestions, which have helped significantly in improving the paper. Guochang Wang’s research was supported by NSFC 11501248 from the National Science Foundation of China and from the Fundamental Research Funds for the Central Universities, Baoxue Zhang’s research was supported by NSFC 11671268 from the National Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxue Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (txt 239 KB)

Appendix

Appendix

1.1 Proof the Theorem 3.1

Let K be the true value of the dimensionality of \(S_{y|x}\). By the law of large number, we have \(\hat{\varGamma }_e-\varGamma _e=O_p(1/\sqrt{n})\). And the Theorem 2.7 of Horváth and Kokoszka (2012), we can get

$$\begin{aligned} \hat{\lambda }_i-\lambda _i=O_p(1/\sqrt{n}). \end{aligned}$$

Therefore, If \(\hat{K}>K,\)

$$\begin{aligned} G(\hat{K})-G(K)=&\left( \sqrt{n}\frac{\sum _{i=1}^{\hat{K}}\hat{\lambda }_i}{\sum _{i=1}^{p}\hat{\lambda }_i}-2\ln (n)\frac{\hat{K}}{p}\right) -\left( \sqrt{n}\frac{\sum _{i=1}^K\hat{\lambda }_i}{\sum _{i=1}^{p}\hat{\lambda }_i}-2\ln (n)\frac{K}{p}\right) \nonumber \\ =&\sqrt{n}\frac{\sum _{i=K+1}^{\hat{K}}\hat{\lambda }_i}{\sum _{i=1}^p\hat{\lambda }_i}+2\ln (n)\frac{K-\hat{K}}{p} \rightarrow \sqrt{n}\frac{\sum _{i=K+1}^{\hat{K}}\lambda _i}{\sum _{i=1}^p\lambda _i}\nonumber \\&\qquad \qquad \qquad \qquad +2\ln (n)\frac{K-\hat{K}}{p}>0. \end{aligned}$$
(9)

If \(\hat{K}<K\),

$$\begin{aligned} G(\hat{K})-G(K)=&\left( \sqrt{n}\frac{\sum _{i=1}^{\hat{K}}\hat{\lambda }_i}{\sum _{i=1}^p\hat{\lambda }_i}-2\ln (n)\frac{\hat{K}}{p}\right) -\left( \sqrt{n}\frac{\sum _{i=1}^K\hat{\lambda }_i}{\sum _{i=1}^p\hat{\lambda }_i}-2\ln (n)\frac{K}{p}\right) \nonumber \\&=-\sqrt{n}\frac{\sum _{i=\hat{K}+1}^K\hat{\lambda }_i}{\sum _{i=1}^p\hat{\lambda }_i}+2\ln (n)\frac{K-\hat{K}}{p} \rightarrow 2\ln (n)\frac{K-\hat{K}}{p}>0. \end{aligned}$$
(10)

It follows from (9) and (10) that \(\hat{K}\rightarrow K\) in probability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Liang, B., Wang, H. et al. Dimension reduction for functional regression with a binary response. Stat Papers 62, 193–208 (2021). https://doi.org/10.1007/s00362-019-01083-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01083-1

Keywords

Navigation