Skip to main content
Log in

Linear mixed model with Laplace distribution (LLMM)

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Linear mixed modeling (LMM) is a comprehensive technique used for clustered, panel and longitudinal data. The main assumption of classical LMM is having normally distributed random effects and error terms. However, there are several situations for that we need to use heavier tails distributions than the (multivariate) normal to handle outliers and/or heavy tailness in data. In this study, we focus on LMM using the multivariate Laplace distribution which is known as the heavy tailed alternative to the normal distribution. The parameter estimators of interest are generated with EM algorithm for the proposed model. A simulation study is provided to illustrate the performance of the Laplace distribution over the normal distribution for LMM. Also, a real data example is used to explore the behavior of the proposed estimators over the counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arellano-Valle RB, Bolfarine H, Lachos VH (2005) Skew-normal linear mixed models. J Data Sci 3:415–438

    MATH  Google Scholar 

  • Arslan O (2010) An alternative multivariate skew Laplace distribution: properties and estimation. Stat Pap 51:865–887

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen O (1978) Hyperbolic distributions and distributions on hyperbolae. Scand J Stat 5:151–157

    MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen O, Halgreen C (1977) Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions. Z Wahrscheinlichkeitstheorie verw Gebiete 38:309–311

    Article  MathSciNet  MATH  Google Scholar 

  • Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Wiley, New York

    MATH  Google Scholar 

  • Choudhary PK, Sengupta D, Cassey P (2014) A general skew-t mixed model that allows different degrees of freedom for random effects and error distributions. J Stat Plan Inference 147:235–247

    Article  MathSciNet  MATH  Google Scholar 

  • Demidenko E (2004) Mixed models: theory and applications. Wiley, New York

    Book  MATH  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39:1–38

    MathSciNet  MATH  Google Scholar 

  • Eisenhart C (1947) The assumptions underlying the analysis of variance. Biometrics 3:1–21

    Article  MathSciNet  Google Scholar 

  • Fang KT, Kotz S, Ng FW (1990) Symmetric multivariate and related distributions. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Gómez E, Gomez-Viilegas MA, Marín JM (1998) A multivariate generalization of the power exponential family of distributions. Commun Stati Theory Methods 27:589–600

    Article  MathSciNet  MATH  Google Scholar 

  • Gómez-Sánchez-Manzano E, Gómez-Villegas MA, Marín JM (2006) Sequences of elliptical distributions and mixtures of normal distributions. J Multivar Anal 97:295–310

    Article  MathSciNet  MATH  Google Scholar 

  • Gómez-Sánchez-Manzano E, Gómez-Villegas MA, Marín JM (2008) Multivariate exponential power distributions as mixtures of normal distributions with Bayesian applications. Commun Stat Theory Methods 37:972–985

    Article  MATH  Google Scholar 

  • Gómez-Villegas M, Gómez-Sánchez-Manzano E, Maín P, Navarro H (2011) The effect of non-normality in the power exponential distributions. Understanding complex systems. In: Pardo L, Balakrishnan N, Gil M (eds) Modern mathematical tools and techniques in capturing complexity. Springer, Berlin Heidelberg, pp 119–129

    Chapter  Google Scholar 

  • Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics: the approach based on influence functions. Wiley, New York

    MATH  Google Scholar 

  • Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related problems. J Am Stat Assoc 72:320–338

    Article  MathSciNet  MATH  Google Scholar 

  • Healy M, Westmacott M (1956) Missing values in experiments analysed on automatic computers. J R Stat Soc Ser C (Appl Stat) 5:203–206

    Google Scholar 

  • Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309–310

    Google Scholar 

  • Huber PJ (1973) Robust regression: asymptotics, conjectures and Monte Carlo. Ann Math Stat 1:799–821

    Article  MathSciNet  MATH  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Jorgensen B (1982) Statistical properties of the generalized inverse Gaussian distributions, vol 9. Lecture Notes in statistics, Springer, New York

  • Kleinbaum DG (1973) A generalization of the growth curve model which allows missing data. J Multivar Anal 3:117–124

    Article  MathSciNet  MATH  Google Scholar 

  • Lachos VH, Dey DK, Cancho VG (2009) Robust linear mixed models with skew-normal independent distributions from a Bayesian perspective. J Stat Plan Inference 139:4098–4110

    Article  MathSciNet  MATH  Google Scholar 

  • Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974

    Article  MATH  Google Scholar 

  • Lange KL, Little RJA, Taylor JMG (1989) Robust statistical modeling using the t distribution. J Am Stat Assoc 84:881–896

    MathSciNet  Google Scholar 

  • Lin TI (2008) Longitudinal data analysis using t linear mixed models with autoregressive dependence structures. J Data Sci 6:333–355

    Google Scholar 

  • Lin T, Lee J (2008) Estimation and prediction in linear mixed models with skew-normal random effects for longitudinal data. Stat Med 27:1490–1507

    Article  MathSciNet  Google Scholar 

  • Lindstrom MJ, Bates DM (1988) Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. J Am Stat Assoc 83:1014–1022

    MathSciNet  MATH  Google Scholar 

  • McCulloch CE, Searle SR (2001) Generalized, linear, and mixed models. Wiley, New York

    MATH  Google Scholar 

  • McLachlan GJ, Krishnan T (1997) The EM algorithm and extensions. Wiley Series in Probability and Statistics, New York

    MATH  Google Scholar 

  • Meng X-L, Rubin DB (1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80:267–278

    Article  MathSciNet  MATH  Google Scholar 

  • Osorio F, Paula GA, Galea M (2007) Assessment of local influence in elliptical linear models with longitudinal structure. Comput Stat Data Anal 51:4354–4368

    Article  MathSciNet  MATH  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Pinheiro JC, Liu C, Wu YN (2001) Efficient algorithms for Robust estimation in linear mixed-effects models using the multivariate t distribution. J Comput Graph Stat 10:249–276

    Article  MathSciNet  Google Scholar 

  • Potthoff RF, Roy SN (1964) A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika 51:313–326

    Article  MathSciNet  MATH  Google Scholar 

  • Raudenbush SW, Bryk AS (2002) Hierarchical linear models: applications and data analysis methods. Sage Publications, Newbury Park

  • Samorodnitsky G, Taqqu MS (1994) Stable non-Gaussian random processes: stochastic models with infinite variance. Chapman and Hall, New York

    MATH  Google Scholar 

  • Searle SR, Casella G, McCulloch CE (1992) Variance components. Wiley, New York

    Book  MATH  Google Scholar 

  • Verbeke G, Lesaffre E (1996) A linear mixed-effects model with heterogeneity in the random-effects population. J Am Stat Assoc 91:217–221

    Article  MATH  Google Scholar 

  • Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer, New York

    MATH  Google Scholar 

  • Watson GN (1966) A treatise on the theory of Bessel functions. Cambridge University Press, London

    MATH  Google Scholar 

  • West BT, Welch KB, Galeckl AT (2007) Linear mixed models: a practical guide using statistical software. CRC Press LLC, Boca Raton

    Google Scholar 

  • West M (1987) On scale mixtures of normal distributions. Biometrika 74:646–648

    Article  MathSciNet  MATH  Google Scholar 

  • Wu CFJ (1983) On the convergence properties of the EM algorithm. Ann Stat 11:95–103

    Article  MathSciNet  MATH  Google Scholar 

  • Zellner A (1976) Bayesian and non-Bayesian analysis of the regression model with multivariate student-t error terms. J Am Stat Assoc 71:400–405

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the Editor and two anonymous referees for valuable suggestions that greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulya Gokalp Yavuz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavuz, F.G., Arslan, O. Linear mixed model with Laplace distribution (LLMM). Stat Papers 59, 271–289 (2018). https://doi.org/10.1007/s00362-016-0763-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-016-0763-x

Keywords

Navigation