Skip to main content
Log in

D-optimal designs for full and reduced Fourier regression models

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

The optimal designs for Fourier regression models under the D-optimality criterion are discussed in this article. First, we investigate the D-optimal designs for estimating two coefficients corresponding to either sine or cosine terms in a full Fourier regression model. In many biological applications, estimating such specific pairs of coefficients is of interest. As a result of this article, the D-optimal designs for estimating these “coefficient pairs” can be constructed either explicitly or numerically for Fourier regression models with any order. Our resulting designs are provided for Fourier regression models with order less than 6. Secondly, we discuss the sensitivity of our resulting optimal designs for a full Fourier regression model when the true model is actually a reduced version of the assumed one. Lastly, we provide the algorithm for obtaining the D-optimal designs for a reduced Fourier regression model and the D-optimal designs for a useful reduced Fourier model are constructed. The comparison study shows that the constructed designs incorporating the reduced model are efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bracewell RN (1986) The Fourier transform and its applications. McGraw Hill, New York

    MATH  Google Scholar 

  • Currie AJ, Ganeshanandam S, Noition DA, Garrick D, Shelbourne CJA, Oragguzie N (2000) Quantitative evaluation of apple (Malus \(\times \) domestica Borkh.) fruit shape by principle component analysis of Fourier descriptors. Euphytica 111:219–227

    Article  Google Scholar 

  • Dette H, Haller G (1998) Optimal designs for the identification of the order of a Fourier regression. Ann Stat 26:1496–1521

    Article  MathSciNet  MATH  Google Scholar 

  • Dette H, Melas VB (2002) E-optimal designs for Fourier regression models. Math Methods Stat 11:259–296

    Google Scholar 

  • Dette H, Melas VB (2003) Optimal designs for estimating individual coefficients in Fourier regression models. Ann Stat 31:1669–1692

    Article  MathSciNet  MATH  Google Scholar 

  • Dette H, Melas VB, Pepelyshev A (2002) D-optimal designs for trigonometric regression models on a partial circle. Ann Inst Stat Math 54(4):945–959

    Article  MathSciNet  MATH  Google Scholar 

  • Dette H, Melas VB, Shpilev P (2007) Optimal designs for estimating the coefficients of the lower frequencies in trigonometric regression models. Ann Inst Stat Math 59(4):655–673

    Article  MathSciNet  MATH  Google Scholar 

  • Dette H, Melas VB, Shpilev P (2009) Optimal designs for estimating pairs of coefficients in Fourier regression models. Stat Sin 19(4):1587–1601

    MathSciNet  MATH  Google Scholar 

  • Draper NR, Pukelsheim F (1996) An overview of design of experiments. Stat Pap 37:1–32

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov VV (1972) Theory of optimal experiments. Academic, New York

    Google Scholar 

  • Kiefer J (1961) Optimum designs in regression problems, II. Ann Math Stat 32:298–325

    Article  MathSciNet  MATH  Google Scholar 

  • Melas VB, Pepelyshev A, Shpilev P, Salmaso L, Corain L, Arboretti R (2014) On the optimal choice of the number of empirical Fourier coefficients for comparison of regression curves. Stat Pap. doi:10.1007/s00362-014-0619-1

  • Pukelsheim F (1993) Optimal design of experiments. Wiley, New York

    MATH  Google Scholar 

  • Rencher AC (2000) Linear models in statistics. Wiley, New York

    MATH  Google Scholar 

  • Silvey SD (1980) Optimal design: an introduction to the theory for parameter estimation. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Wiens DP (1991) Designs for approximately linear regression: two optimality properties of uniform designs. Stat Probab Lett 12:217–221

    Article  MathSciNet  MATH  Google Scholar 

  • Xu X, Shang X (2014) Optimal and robust designs for trigonometric regression models. Metrika 77(6):753–769

    Article  MathSciNet  MATH  Google Scholar 

  • Younker JC, Ehrlich R (1977) Fourier biometrics: harmonic amplitudes as multivariate shape descriptors. Syst Zool 26:336–342

    Article  Google Scholar 

  • Zhang F (1999) Matrix theory: basic results and techniques. Springer, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The research of both authors is supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojian Xu.

Appendix: Proof of Lemma 1

Appendix: Proof of Lemma 1

Let \(\mathbf {x}_{\mathbf {\tau }}=(\cos ( a\tau _{1}) ,\ldots ,\cos ( a\tau _{m-1})) ^{T}.\) The following expansion

$$\begin{aligned} \cos ( t) =1-\frac{t^{2}}{2}+o\left( t^{2}\right) , \end{aligned}$$

implies that as \(a\rightarrow 0,\)

$$\begin{aligned} \varphi \left( \mathbf {x}_{\mathbf {\tau }},\,a\right) =\frac{a^{2m( m+1) }}{2^{m( m+1) }}\prod \limits _{i=1}^{m}\left( \tau _{i}^{2}\right) ^{2}\prod \limits _{1\le i<j\le m}\left( \tau _{j} ^{2}-\tau _{i}^{2}\right) ^{2}( 1+o(a)); \end{aligned}$$

then, \(\lim _{a\rightarrow 0}\mathbf {\tau }^{*}( a)\) exists and can be obtained by maximizing

$$\begin{aligned} \tilde{\varphi }( \mathbf {\tau }) =\prod \limits _{i=1} ^{m-1}\left( \tau _{i}^{2}\right) ^{2}\left( 1-\tau _{i}^{2}\right) ^{2}\prod \limits _{1\le i<j\le m-1}\left( \tau _{j}^{2}-\tau _{i} ^{2}\right) ^{2} \end{aligned}$$

over T defined in Sect. 4.2. Let \(y_{i}=\tau _{i}^{2}\in (0,\,1).\) In order to maximize the following quantity,

$$\begin{aligned} \hat{\varphi }( y)=\prod \limits _{i=1}^{m-1}y_{i}^{2}\left( 1-y_{i}\right) ^{2}\prod \limits _{1\le i<j\le m-1}\left( y_{j} -y_{i}\right) ^{2}, \end{aligned}$$

the conditions in (11)

$$\begin{aligned} \frac{\partial \log \hat{\varphi }( y) }{\partial y_{i}}=\frac{4}{y_{i}}+\sum \limits _{j=1,j\ne i}^{m-1}\frac{4}{y_{i}-y_{j}}=0,\quad i=1,\ldots ,m-1, \end{aligned}$$
(11)

must be satisfied. Similar arguments as given in Fedorov (1972) show that the polynomial \(\phi (y)=( y-y_{1})(y-y_{2}), \ldots ,( y-y_{m-1})\) satisfies the differential equation

$$\begin{aligned} y( 1-y) \phi ^{\prime \prime }(y)( 2-4y) \phi ^{\prime }(y)+( m-1)( m+2) \phi (y)=0. \end{aligned}$$
(12)

It is well known that Eq. (12) has a unique solution given by the Jacobi polynomial \(P_{m-1}^{(1,1)}(1-2y),\) and the lemma is now proved by transformation \(y=\tau ^{2}.\) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Shang, X. D-optimal designs for full and reduced Fourier regression models. Stat Papers 58, 811–829 (2017). https://doi.org/10.1007/s00362-015-0727-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-015-0727-6

Keywords

Navigation