Skip to main content
Log in

Particle size reduction along the digestive tract of fat sand rats (Psammomys obesus) fed four chenopods

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

It is generally accepted that microbial digestion contributes little to digesta particle size reduction in herbivores, and that faecal particle size reflects mainly chewing efficiency, and may vary with diet. Nevertheless, a decrease in mean particle size (MPS) along the gastrointestinal tract (GIT) has been reported, especially in hindgut fermenters. However, to what degree the very fine particle fraction (non-food origin, especially microbes) affects MPS is unclear. Fat sand rats (Psammomys obesus, diurnal herbivores, n = 23, 175 ± sd 24 g) consumed one of four chenopods (natural dietary items in the wild) for 30 days. Digestibility was related negatively to dietary fibre content. We determined digesta MPS in the forestomach, glandular stomach, small intestine, caecum, colon and faeces by wet sieving, including (MPSfines) or excluding (MPSnofines) particles < 0.25 mm. The proportions of fines were higher and of MPSfines were correspondingly lower in GIT sections that harbour microbes (forestomach, hindgut), whereas MPSnofines did not differ between forestomach and glandular stomach. However, MPSnofines decreased along the GIT, indicating MPS reduction due to digestive (enzymatic and microbial) processes. The four different diets led to different MPS, but the magnitude of MPS reduction in the GIT was not correlated with dietary fibre fractions or dry matter digestibility. These results indicate that within a species, MPS cannot be used as a proxy for diet quality or digestibility, and raise the hypothesis that MPS reduction along the GIT may be more pronounced in smaller than in larger mammalian terrestrial herbivores, possibly due to the fine initial particles produced by chewing in small species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bar Y, Abramsky Z, Gutterman Y (1984) Diets of gerbilline rodents in the Israeli desert. J Arid Environ 7:371–376

    Article  Google Scholar 

  • Bjorndal KA, Bolten AB, Moore JE (1990) Digestive fermentation in herbivores: effect of food particles size. Physiol Zool 63:710–721

    Article  Google Scholar 

  • Björnhag G, Snipes RL (1999) Colonic separation mechanism in lagomorph and rodent species–a comparison. Zoosyst Evol 75:275–281

    Article  Google Scholar 

  • Clauss M, Steuer P, Erlinghagen-Lückerath K, Kaandorp J, Fritz J, Südekum K-H, Hummel J (2015) Faecal particle size: digestive physiology meets herbivore diversity. Comp Biochem Physiol A 179:182–191

    Article  CAS  Google Scholar 

  • Clauss M, Hagen KB, Frei S, Ortmann S, Lawrenz A, Głogowski R, Fritz J, Flach EJ, Kreuzer M (2019) Digestive anatomy, physiology, resting metabolism and methane production in captive maras (Dolichotis patagonum). Comp Biochem Physiol A 235:82–89

    Article  CAS  Google Scholar 

  • Cork SJ, Hume ID, Faichney GJ (1999) Digestive strategies of nonruminant herbivores: the role of the hindgut. In: Jung HJG, Fahey GC (eds) Nutritional ecology of herbivores. American Society of Animal Science, Savoy, pp 210–260

    Google Scholar 

  • Daly M, Daly S (1973) On the feeding ecology of Psammomys obesus (Rodentia: Gerbillinae) in the Wadi Saoura, Algeria. Mammalia 37:545–561

    Article  Google Scholar 

  • Degen AA (1988) Ash and electrolyte intakes of the fat sand rat, Psammomys obesus, consuming saltbush, Atriplex halimus, containing different water content. Physiol Zool 61:137–141

    Article  CAS  Google Scholar 

  • Degen AA, Kam M, Khokhlova IS, Zeevi Y (2000) Fiber digestion and energy utilization of fat sand rats (Psammomys obesus) consuming the chenopod Anabasis articulata. Physiol Biochem Zool 73:574–580

    Article  CAS  PubMed  Google Scholar 

  • Dehority BA (1993) Laboratory manual for classification and morphology of rumen ciliate protozoa. CRC Press, Boca Raton

    Google Scholar 

  • Demment MW, Van Soest PJ (1985) A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Amer Nat 125:641–672

    Article  Google Scholar 

  • Foley WJ, Cork SJ (1992) Use of fibrous diets by small herbivores: How far can the rules be ‘bent’? TREE 7:159–162

    CAS  PubMed  Google Scholar 

  • Fritz J, Hummel J, Kienzle E, Arnold C, Nunn C, Clauss M (2009) Comparative chewing efficiency in mammalan herbivores. Oikos 118:1623–1632

    Article  Google Scholar 

  • Fritz J, Hummel J, Kienzle E, Streich WJ, Clauss M (2010) To chew or not to chew: faecal particle size in herbivores reptiles and mammals. J Exp Zool A 313:79–586

    Google Scholar 

  • Fritz J, Streich WJ, Schwarm A, Clauss M (2012) Condensing results of wet sieving analyses into a single data: a comparison of methods for particle size description. J Anim Physiol Nutr 96:783–797

    Article  Google Scholar 

  • Frobisher M, Hinsdill RD, Crabtree KT, Goodheart CR (1974) Fundamentals of microbiology. W.B. Saunders, Philadelphia

    Google Scholar 

  • Gálvez-Cerón A, Gassó D, López-Olvera JR, Mentaberre G, Bartolomé J, Marco I, Ferrer D, Rossi L, Garel M, Lavín S, Clauss M, Serrano E (2015) Gastrointestinal nematodes and dietary fibre: Two factors to consider when using FN for wildlife nutrition monitoring. Ecol Indic 52:161–169

    Article  Google Scholar 

  • Goering HK, Van Soest PJ (1970). Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Application). Agricultural Handbook No. 379, Agricultural Research Service, U.S. Department of Agriculture.

  • Hagen KB, Tschudin A, Liesegang A, Hatt J-M, Clauss M (2015) Organic matter and macromineral digestibility in domestic rabbits (Oryctolagus cuniculus) as compared to other hindgut fermenters. J Anim Physiol Anim Nutr 99:1197–1209

    Article  CAS  Google Scholar 

  • Hummel J, Fritz J, Kienzle E, Medici EP, Lang S, Zimmermann W, Streich WJ, Clauss M (2008) Differences in fecal particle size between free-ranging and captive individuals of two browser species. Zoo Biol 27:70–77

    Article  PubMed  Google Scholar 

  • Hummel J, Clauss M, Südekum K-H (2020) Aspects of food comminution in ungulates and their consequences for energy budget. In: Martin T, von Koenigswald W (eds) Mammalian teeth—form and function. Dr, Friedrich Pfeil, Munich, pp 87–101

    Google Scholar 

  • Ilan M, Yom-Tov Y (1990) Diel activity pattern of a diurnal desert rodent, Psammomys obesus. J Mammal 71:66–69

    Article  Google Scholar 

  • Jalali AR, Nørgaard P, Weisbjerg MR, Nielsen MO (2012a) Effect of forage quality on intake, chewing activity, faecal particle size distribution, and digestibility of neutral detergent fibre in sheep, goats, and llamas. Small Rumin Res 103:143–151

    Article  Google Scholar 

  • Jalali AR, Nørgaard P, Weisbjerg MR, Nadeau E (2012b) Effect of stage of maturity of grass at harvest on intake, chewing activity and distribution of particle size in faeces from pregnant ewes. Animal 6:1774–1783

    Article  CAS  PubMed  Google Scholar 

  • Jalali AR, Weisbjerg MR, Nadeau E, Randby ÅT, Rustas BO, Eknæs M, Nørgaard P (2015) Effects of forage type, animal characteristics and feed intake on faecal particle size in goat, sheep, llama and cattle. Anim Feed Sci Technol 208:53–65

    Article  Google Scholar 

  • Kam M, Degen AA (1989) Efficiency of use of saltbush (Atriplex halimus) for growth by fat sand rats (Psammomys obesus). J Mammal 70:485–493

    Article  Google Scholar 

  • Khokhlova IS, Krasnov BR, Kuznetsov V, Sartor CE, Zan M, Salek L, Ghazaryan L, Kam M, Degen AA (2005) Dietary intake and time budget in two desert rodents: a diurnal herbivore, Psammomys obesus, and a nocturnal granivore, Meriones crassus. Mammalia 69:1–11

    Article  Google Scholar 

  • Kljak K, Heinrichs BS, Heinrichs AJ (2019) Fecal particle dry matter and fiber distribution of heifers fed ad libitum and restricted with low and high forage quality. J Dairy Sci 102:4694–4703

    Article  CAS  PubMed  Google Scholar 

  • Krämer M, Nørgaard P, Lund P, Weisbjerg MR (2013) Particle size alterations of feedstuffs during in situ neutral detergent fiber incubation. J Dairy Sci 96:4601–4614

    Article  PubMed  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: tests in linear mixed effects models. J Stat Softw 82:1–26

    Article  Google Scholar 

  • Langer P, Clauss M (2018) Morphological adaptation of the eutherian gastrointestinal tract to diet. Vertebr Zool 68:237–252

    Google Scholar 

  • Lanyon JM, Sanson GD (1986) Koala (Phascolarctos cinereus) dentition and nutrition. II. Implications of tooth wear in nutrition. J Zool (Lond) 209:169–181

    Article  Google Scholar 

  • Lanyon JM, Sanson GD (2006) Mechanical disruption of seagrass in the digestive tract of the dugong. J Zool (Lond) 270:277–289

    Article  Google Scholar 

  • Lechner-Doll M, von Engelhardt W (1989) Particle size and passage from the forestomach in camels compared to cattle and sheep fed a similar diet. J Anim Physiol Anim Nutr 61:120–128

    Article  Google Scholar 

  • Logan M (2003) Effect of tooth wear on the rumination-like behavior, or merycism, of free-ranging koalas (Phascolarctos cinereus). J Mammal 84:897–902

    Article  Google Scholar 

  • Lukas M, Südekum K-H, Rave G, Friedel K, Susenbeth A (2005) Relationship between fecal crude protein concentration and diet organic matter digestibility in cattle. J Anim Sci 83:1332–1344

    Article  CAS  PubMed  Google Scholar 

  • Matsuda I, Tuuga A, Hashimoto C, Bernard H, Yamagiwa J, Fritz J, Tsubokawa K, Yayota M, Murai T, Iwata Y, Clauss M (2014) Faecal particle size in free-ranging primates supports ‘rumination’ strategy in the proboscis monkey (Nasalis larvatus). Oecologia 174:1127–1137

    Article  PubMed  Google Scholar 

  • McLeod MN, Minson DJ (1988) Large particle breakdown by cattle eating ryegrass and alfalfa. J Anim Sci 66:992–999

    Article  CAS  PubMed  Google Scholar 

  • Mendelssohn H, Yom-Tov Y (1987) Plants and animals of the land of Israel, vol 7. Tel Aviv, Ministry of Defense Publishing House (in Hebrew), Mammals, pp 112–114

  • Mésochina P, Martin-Rosset W, Peyraud J, Duncan P, Micol D, Boulot S (1998) Prediction of the digestibility of the diet of horses: evaluation of faecal indices. Grass Forage Sci 53:189–196

    Article  Google Scholar 

  • Meyer H, Coenen M, Teleb H, Probst D (1986) Beiträge zur Verdauungsphysiologie des Pferdes. 15. Mitteilung. Untersuchungen über Futterzerkleinerung und Freisetzung von Futterinhaltsstoffen im Kopfdarm des Pferdes. J Anim Physiol Anim Nutr 56:266–275

    Article  Google Scholar 

  • Müller DWH, Codron D, Meloro C, Munn A, Schwarm A, Hummel J, Clauss M (2013) Assessing the Jarman-Bell Principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores. Comp Biochem Physiol A 164:129–140

    Article  Google Scholar 

  • Murphy MR, Nicoletti JM (1984) Potential reduction of forage and rumen digesta particle size by microbial action. J Dairy Sci 67:1221–1226

    Article  Google Scholar 

  • Naumova EI, Zharova GK, Chistova TY (2011) Isolating structures of gerbils’ digestive tract (Gerbillidae, Rhombomys, Meriones) and their functional significance. Biol Bull 38:379–385

    Article  Google Scholar 

  • Naumova EI, Zharova GK, Chistova TY, Danilkin AA (2012) Reduction of plant fibers in the digestive tract of the moose and the red deer. Biol Bull 39:441–447

    Article  Google Scholar 

  • Naumova EI, Zharova GK, Chistova TY, Kuznetsova TA (2015a) The effect of coprophagy on the size of plant fibers in the digestive tract of hares Lepus europaeus and L. timidus. Biol Bull 42:426–431

    Article  Google Scholar 

  • Naumova EI, Zharova GK, Chistova TY, Varshavskii AA, Formozov NA (2015b) Reduction of plant fibers in the digestive tract of two pika species (Ochotona pallasi and O. dauurica, Lagomorpha, Ochotonidae). Biol Bull 42:124–128

    Article  CAS  Google Scholar 

  • Naumova EI, Zharova GK, Chistova TY, Kuznetsova TA (2018) Functional and size characteristics of the digestive tract of the mole vole Ellobius talpinus. Biol Bull 45:388–393

    Article  Google Scholar 

  • Naumova EI, Zharova GK, Chistova TY, Varshavskii AA, Ivlev YF (2017) Concentration and size distribution of plant fiber in the digestive tract of muroid rodents. Biol Bull 44:517–523

    Article  Google Scholar 

  • Naumova EI, Chistova TY, Zharova GK, Kam M, Khokhlova IS, Krasnov BR, Degen AA (2019) Energy requirements, digestive tract compartments and body mass in six gerbilline rodents of the Negev Desert. Zoology 137:1–8

    Article  Google Scholar 

  • Nørgaard P, Husted S, Ranvig H (2004) Effect of supplementation with whole wheat or whole oat grains on the dimensions of feaces particles from lambs. J Anim Feed Sci 13:175–178

    Article  Google Scholar 

  • Nowak RM, Paradiso JL (1983). Walker’s Mammals of the World. Fourth edition. The Johns Hopkins University Press.

  • Nygren KFA, Lechner-Doll M, Hofmann RR (2001) Influence of papillae on post-ruminal regulation of ingesta passage in moose (Alces alces L.). J Zool (Lond) 254:375–380

    Article  Google Scholar 

  • Orr T (1972) The underground burrow of the fat sand rat. Teva Va’aretz (magazine of the Israel Nature Protection Society) 6:280–284 (in Hebrew)

    Google Scholar 

  • Palgi N, Taleisnik H, Pinshow B (2008) Elimination of oxalate by fat sand rats (Psammomys obesus): Wild and laboratory-bred animals compared. Comp Biochem Physiol A 149:197–202

    Article  Google Scholar 

  • Palgi N, Vatnick I, Pinshow B (2005) Oxalate, calcium and ash intake and excretion balances in fat sand rats (Psammomys obesus) feeding on two different diets. Comp Biochem Physiol A 141:48–53

    Article  Google Scholar 

  • Poppi DP, Minson DJ, Ternouth JH (1980a) Studies of cattle and sheep eating leaf and stem fractions of grasses. I.The voluntary intake, digestibility and retention time in the reticulo-rumen. Aust J Agric Res 32:99–108

    Article  Google Scholar 

  • Poppi DP, Norton BW, Minson DJ, Hendricksen RE (1980b) The validity of the critical size theory for particles leaving the rumen. J Agric Sci 94:275–280

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. version 3.4.1. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/

  • Renecker LA, Hudson RJ (1990) Digestive kinetics of moose, wapiti and cattle. Anim Prod 50:51–61

    Google Scholar 

  • Schwarm A, Ortmann S, Fritz J, Rietschel W, Flach EJ, Clauss M (2013) No distinct stratification of ingesta particles and no distinct moisture gradient in the forestomach of nonruminants: the wallaby, peccary, hippopotamus, and sloth. Mammal Biol 78:412–421

    Article  Google Scholar 

  • Siddons RC, Beever DE, Nolan JV (1982) A comparison of methods for the estimation of microbial nitrogen in duodenal digesta of sheep. Br J Nutr 48:377–389

    Article  CAS  PubMed  Google Scholar 

  • Spalinger DE, Robbins CT (1992) The dynamics of particle flow in the rumen of mule deer (Odocoileus hemionus hemionus) and elk (Cervus elaphus nelsoni). Physiol Zool 65:379–402

    Article  Google Scholar 

  • Uden P, Van Soest PJ (1982) The determination of digesta particle size in some herbivores. Anim Feed Sci Technol 7:35–44

    Article  Google Scholar 

  • Vendl C, Munn A, Leggett K, Clauss M (2017) Merycism in western grey (Macropus fuliginosus) and red kangaroos (Macropus rufus). Mamm Biol 86:21–26

    Article  Google Scholar 

  • Vispo C, Hume ID (1995) The digestive tract and digestive function in the North American porcupine and beaver. Can J Zool 73:967–974

    Article  Google Scholar 

  • Zharova GK, Naumova EI, Chistova TY (2005) The reduction of cellulose fibers in the common field voles’ digestive tract. Dokl Biol Sci 402:332–335 (in Russian)

    Google Scholar 

Download references

Acknowledgements

This study was approved by the Israel Nature and National Parks Protection Authority (INNPPA) under permit number 2003/16737. Data are available as supplementary material. We thank Adam Munn and Sylvia Ortmann for helpful suggestions on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Allan Degen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by P. Withers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumova, E.I., Chistova, T.Y., Zharova, G.K. et al. Particle size reduction along the digestive tract of fat sand rats (Psammomys obesus) fed four chenopods. J Comp Physiol B 191, 831–841 (2021). https://doi.org/10.1007/s00360-021-01357-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-021-01357-x

Keywords

Navigation