Skip to main content
Log in

Effects of emersion on acid–base regulation, osmoregulation, and nitrogen physiology in the semi-terrestrial mangrove crab, Helice formosensis

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Emersion limits water availability and impairs the gill function of water-breathing animals resulting in a reduced capacity to regulate respiratory gas exchange, acid–base balance, and nitrogenous waste excretion. Semi-terrestrial crustaceans such as Helice formosensis mitigate these physiological consequences by modifying and recycling urine and branchial water shifting some branchial workload to the antennal glands. To investigate how this process occurs, Helice formosensis were emersed for up to 160 h and their hemolymph and urinary acid–base, nitrogenous waste, free amino acids, and osmoregulatory parameters were investigated. Upon emersion, crabs experienced a respiratory acidosis that is restored by bicarbonate accumulation and ammonia reduction within the hemolymph and urine after 24 h. Prolonged emersion caused an overcompensatory metabolic alkalosis potentially limiting the crab’s ability to remain emersed. During the alkalosis, hemolymph ammonia was maintained at control levels while urinary ammonia remained reduced by 60% of control values. During emersion, ammonia may be temporarily converted to alanine as part of the Cahill cycle until re-immersion where crabs can revert alanine to ammonia for excretion coinciding with the crabs’ observed delayed ammonia excretion response. The presence of high hemolymph alanine concentrations even when immersed may indicate this cycle’s use outside of emersion or in preparation for emersion. Furthermore, H. formosensis appears to be uniquely capable of actively suppressing its rate of desiccation in absence of behavioral changes, in part by creating hyperosmotic urine that mitigates evaporative water loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data material

Data are available at the request to the corresponding author.

References

  • Abel DC, Koenig CC, Davis WP (1987) Emersion in the mangrove forest fish Rivulus marmoratus: a unique response to hydrogen sulfide. Environ Biol Fishes 18:67–72

    Article  Google Scholar 

  • Adamczewska AM, Morris S (2000) Respiratory gas transport, metabolic status, and locomotor capacity of the Christmas Island red crab Gecarcoidea natalis assessed in the field with respect to dichotomous seasonal activity levels. J Exp Zool 286:552–562

    Article  CAS  PubMed  Google Scholar 

  • Allen GJP, Kuan PL, Tseng YC et al (2020) Specialized adaptations allow vent-endemic crabs (Xenograpsus testudinatus) to thrive under extreme environmental hypercapnia. Sci Rep 10:1–13

    Article  Google Scholar 

  • Armenta JM, Cortes DF, Pisciotta JM et al (2010) A sensitive and rapid method for amino acid quantitation in malaria biological samples using AccQ•Tag UPLC-ESI-MS/MS with multiple reaction monitoring. Anal Chem 82:548–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blewett TA, Goss GG (2017) A novel pathway of nutrient absorption in crustaceans: branchial amino acid uptake in the green shore crab (Carcinus maenas). Proc R Soc B Biol Sci 284:1–6

    Google Scholar 

  • Bliss DE, Van Montfrans J, Van Montframs M, Boyer JR (1978) Behavior and growth of the land crab Gecarcinus lateralis (Freminville) in southern Florida. Bull Am Mus Nat Hist 160:113–151

    Google Scholar 

  • Burggren WW (1992) Respiration and circulation in land crabs: novel variations on the marine design. Am Zool 32:417–427

    Article  Google Scholar 

  • Chasiotis H, Ionescu A, Misyura L et al (2016) An animal homolog of plant Mep/Amt transporters promotes ammonia excretion by the anal papillae of the disease vector mosquito Aedes aegypti. J Exp Biol 219:1346–1355

    PubMed  Google Scholar 

  • Claiborne JB, Edwards SL, Morrison-Shetlar AI (2002) Acid-base regulation in fishes: cellular and molecular mechanisms. J Exp Zool 293:302–319

    Article  CAS  PubMed  Google Scholar 

  • De Vries MC, Wolcott DL, Holliday CW (1994) High ammonia and low pH in the urine of the ghost crab, Ocypode quadrata. Biol Bull 186:342–348

    Article  PubMed  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A Oceanogr Res Pap 34:1733–1743

    Article  CAS  Google Scholar 

  • Durand F, Regnault M (1998) Nitrogen metabolism of two portunid crabs, Carcinus maenas and Necora puber, during prolonged air exposure and subsequent recovery: a comparative study. J Exp Biol 201:2515–2528

    Article  CAS  PubMed  Google Scholar 

  • Durand F, Chausson F, Regnault M (1999) Increases in tissue free amino acid levels in response to prolonged emersion in marine crabs: an ammonia-detoxifying process efficient in the intertidal Carcinus maenas but not in the subtidal Necora puber. J Exp Biol 202:2191–2202

    Article  CAS  PubMed  Google Scholar 

  • Durant AC, Donini A (2018) Ammonia excretion in an osmoregulatory syncytium is facilitated by AeAmt2, a novel ammonia transporter in Aedes aegypti larvae. Front Physiol 9:1–16

    Article  Google Scholar 

  • Eshky AA (1992) Evidence of additional functions of the pericardial sacs in the bronchial ventilation in the grapsid crab Grapsus tenuicrustatus. J King Abdulaziz Univ Marine Sci 3:91–104

    Article  Google Scholar 

  • Fehsenfeld S, Weihrauch D (2016) Mechanisms of acid-base regulation in seawater-acclimated green crabs, Carcinus maenas. Can J Zool 94:95–107

    Article  CAS  Google Scholar 

  • Fehsenfeld S, Weihrauch D (2017) Acid-base regulation in aquatic decapod crustaceans. In: Weihrauch D, O’Donnell MJ (eds) Acid-base balance and nitrogen excretion in invertebrates, 1st edn. Springer International Publishing, Switzerland, pp 152–185

    Google Scholar 

  • Felig P (1973) The glucose-alanine cycle. Metabolism 22:179–207

    Article  CAS  PubMed  Google Scholar 

  • Felig P, Pozefsk T, Marlis E, Cahill GF (1970) Alanine: key role in gluconeogenesis. Science (80- ) 167:1003–1004

    Article  CAS  Google Scholar 

  • Florence TM, Farrar YJ (1971) Spectrophotometric determination of chloride at the parts-per-billion level by the mercury(II) thiocyanate method. Anal Chim Acta 54:373–377

    Article  CAS  Google Scholar 

  • Gilmour KM, Perry SF (2009) Carbonic anhydrase and acid-base regulation in fish. J Exp Biol 212:1647–1661

    Article  CAS  PubMed  Google Scholar 

  • Goss GG, Perry SF, Wood CM, Laurent P (1992) Mechanisms of ion and acid-base regulation at the gills of freshwater fish. J Exp Zool 263:143–159

    Article  CAS  PubMed  Google Scholar 

  • Greenaway P (1999) Physiological diversity and the colonization of land. In: Schram FR, von Vaupel Klein JC (eds) Crustaceans and the biodiversity crisis. Koninklijke Brill NV, Leiden, pp 823–842

    Google Scholar 

  • Hans S, Fehsenfeld S, Treberg JR, Weihrauch D (2014) Acid-base regulation in the Dungeness crab (Metacarcinus magister). Mar Biol 161:1179–1193

    Article  CAS  Google Scholar 

  • Hans S, Quijada-Rodriguez AR, Allen GJP, et al (2018) Ammonia excretion and acid-base regulation in the American horseshoe crab, Limulus polyphemus. J Exp Biol 221

  • Hartnoll RG (1988) Evolution, systematics, and geographical distribution. In: Burggren WW, Mcmahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 6–54

    Chapter  Google Scholar 

  • Hemre G-I, Mommsen TP, Krogdahl A (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8:175–194

    Article  CAS  Google Scholar 

  • Henry RP, Cameron JN (1982) Acid-base balance in Callinectes sapidus during acclimation from high to low salinity. J Exp Biol 101:255–264

    Article  Google Scholar 

  • Henry RP, Lucu Č, Onken H, Weihrauch D (2012) Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol 3:1–33

    Article  Google Scholar 

  • Holmes RM, Aminot A, Kérouel R et al (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci 56:1801–1808

    Article  CAS  Google Scholar 

  • Hu MY, Sung PH, Guh YJ, et al (2017) Perfused gills reveal fundamental principles of pH regulation and ammonia homeostasis in the cephalopod Octopus vulgaris. Front Physiol 8

  • Hunter KC, Kirschner LB (1986) Sodium absorption coupled to ammonia excretion in osmoconforming marine invertebrates. Am J Physiol Regul Integr Comp Physiol 251

  • Jimenez AG, Bennett WA (2015) Respiratory physiology of three indo-pacific fiddler crabs: metabolic responses to intertidal zonation patterns. Crustaceana 78:965–974

    Article  Google Scholar 

  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Article  Google Scholar 

  • Kristensen E (2008) Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J Sea Res 59:30–43

    Article  Google Scholar 

  • Larsen EH, Deaton LE, Onken H et al (2014) Osmoregulation and excretion. Compr Physiol 4:405–573

    Article  PubMed  Google Scholar 

  • Le Moullac G, Haffner P (2000) Environmental factors affecting immune responses in Crustacea. Aquaculture 191:121–131

    Article  Google Scholar 

  • Lee DJ, Gutbrod M, Ferreras FM, Matthews PGD (2018) Changes in hemolymph total CO2 content during the water-to-air respiratory transition of amphibiotic dragonflies. J Exp Biol 221

  • Linton SM, Greenaway P (1995) Nitrogenous excretion in the amphibious crab Holthuisana transversa under wet and dry conditions. J Crustac Biol 15:633–644

    Article  Google Scholar 

  • Linton SM, Wright JC, Howe CG (2017) Nitrogenous waste metabolism within terrestrial crustacea, with special reference to purine deposits and their metabolism. In: Weihrauch D, O’Donnell MJ (eds) Acid-base balance and nitrogen excretion in invertebrates, 1st edn. Springer International Publishing, Gewerbestrasse, pp 27–40

    Google Scholar 

  • Lozano-Fernandez J, Carton R, Tanner AR, et al (2016) A molecular palaeobiological exploration of arthropod terrestrialization. Philos Trans R Soc B Biol Sci 371

  • Macmillen RE, Greenaway P (1978) Adjustments of energy and water metabolism to drought in an Australian arid-zone crab. Physiol Zool 51:230–240

    Article  Google Scholar 

  • Maitland DP (1986) Crabs that breathe air with their legs-scopimera and dotilla. Nature 319:493–495

    Article  Google Scholar 

  • Martin M, Fehsenfeld S, Sourial MM, Weihrauch D (2011) Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister. Comp Biochem Physiol A Mol Integr Physiol 160:267–277

    Article  CAS  PubMed  Google Scholar 

  • McGaw IJ, Van Leeuwen TE, Trehern RH, Bates AE (2019) Changes in precipitation may alter food preference in an ecosystem engineer, the black land crab. Gecarcinus ruricola PeerJ 7:e6818

    Article  PubMed  Google Scholar 

  • Mchenga ISS, Mfilinge PL, Tsuchiya M (2007) Bioturbation activity by the grapsid crab Helice formosensis and its effects on mangrove sedimentary organic matter. Estuar Coast Shelf Sci 73:316–324

    Article  Google Scholar 

  • McKenzie DJ, Shingles A, Taylor EW (2003) Sub-lethal plasma ammonia accumulation and the exercise performance of salmonids. Comp Biochem Physiol A Mol Integr Physiol 135:515–526

    Article  CAS  PubMed  Google Scholar 

  • Mckenzie DJ, Shingles A, Claireaux G, Domenici P (2009) Sublethal concentrations of ammonia impair performance of the teleost fast-start escape response. Physiol Biochem Zool 82:353–362

    Article  CAS  PubMed  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Mia Y, Shokita S (1997) Optimal salinity required for the larval development of two grapsid crabs, Helice leachi Hess and H. formosensis Rathbun. Crustac Res 26:70–74

    Article  Google Scholar 

  • Mia Y, Shokita S, Watanabe S (2001) Stomach contents of two grapsid crabs, Helice formosensis and Helice leachi. Fish Sci 67:173–175

    Article  CAS  Google Scholar 

  • Mommsen TP, Walsh PJ (1991) Urea synthesis in fishes: evolutionary and biochemical perspectives. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes. Elsevier Science Publishers, 137–163

  • Morris S (2002) The ecophysiology of air-breathing in crabs with special reference to Gecarcoidea natalis. Comp Biochem Physiol B 131:559–570

    Article  PubMed  Google Scholar 

  • Morris S, Greenaway P (1990) Adaptations to a terrestrial existence by the robber crab, Birgus latro L. V. The activity of carbonic anhydrase in gills and lungs. J Comp Physiol B 160:217–221

    Article  CAS  Google Scholar 

  • Nawata M, Wood CM, O’Donnell MJ (2010) Functional characterization of Rhesus glycoproteins from an ammoniotelic teleost, the rainbow trout, using oocyte expression and SIET analysis. J Exp Biol 213:1049–1059

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell MJ, Machin J (1988) Water vapor absorption by terrestrial organsisms. Advances in comparative and environmental physiology. Springer-Verlag, Heidelberg, pp 47–87

    Chapter  Google Scholar 

  • Penha-Lopes G, Bartolini F, Limbu S et al (2009) Are fiddler crabs potentially useful ecosystem engineers in mangrove wastewater wetlands? Mar Pollut Bull 58:1694–1703

    Article  CAS  PubMed  Google Scholar 

  • Perry SF, Shahsavarani A, Georgalis T et al (2003) Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation. J Exp Zool Part A Comp Exp Biol 300:53–62

    Article  CAS  Google Scholar 

  • Pierrot D, Lewis E, Wallace D (2006) MS Excel program developed for CO2 system calculations, ORNL/CDIAC-105. Oak Ridge, TN

    Google Scholar 

  • Regnault M (1994) Effect of air exposure on ammonia excretion and ammonia content of branchial water of the crab Cancer pagurus. J Exp Zool 268:208–217

    Article  CAS  Google Scholar 

  • Simonik E, Henry RP (2014) Physiological responses to emersion in the intertidal green crab, Carcinus maenas (L.). Mar Freshw Behav Physiol 47:101–115

    Article  CAS  Google Scholar 

  • Somero GN (1986) Protons, osmolytes, and fitness of internal milieu for protein function. Am J Physiol 251

  • Teal JM, Carey FG (1967) The metabolism of marsh crabs under conditions of reduced oxygen pressure. Physiol Zool 40:83–91

    Article  CAS  Google Scholar 

  • Thiel D, Hugenschutt M, Meyer H et al (2017) Ammonia excretion in the marine polychaete Eurythoe complanata (Annelida). J Exp Biol 220:425–436

    PubMed  Google Scholar 

  • Truchot JP (1975) Blood acid-base changes during experimental emersion and reimmersion of the intertidal crab Carcinus maenas (L.). Respir Physiol 23:351–360

    Article  CAS  PubMed  Google Scholar 

  • Truchot JP (1976) Carbon dioxide combining properties of the blood of the shore crab Carcinus maenas (L.): carbon dioxide solubility coefficient and carbonic acid dissociation constants. J Exp Biol 64:45–57

    Article  CAS  PubMed  Google Scholar 

  • Tsai JR, Lin HC (2014) Functional anatomy and ion regulatory mechanisms of the antennal gland in a semi-terrestrial crab, Ocypode stimpsoni. Biol Open 3:409–417

    Article  PubMed  PubMed Central  Google Scholar 

  • Tseng KY, Tsai JR, Lin HC (2020) Ion regulation in the antennal glands differs among Ocypodoidea and Grapsoidea crab species. Comp Biochem Physiol A 248:110753

    Article  CAS  Google Scholar 

  • Varley DG, Greenaway P (1994) Nitrogenous excretion in the terrestrial carnivorous crab Geograpsus grayi: Site and mechanism of excretion. J Exp Biol 190:179–193

    Article  CAS  PubMed  Google Scholar 

  • Weihrauch D, Allen GJP (2018) Ammonia excretion in aquatic invertebrates: New insights and questions. J Exp Biol 221

  • Weihrauch D, Becker W, Postel U et al (1998) Active excretion of ammonia across the gills of the shore crab Carcinus maenas and its relation to osmoregulatory ion uptake. J Comp Physiol B 168:364–376

    Article  CAS  Google Scholar 

  • Weihrauch D, Ziegler A, Siebers D, Towle DW (2002) Active ammonia excretion across the gills of the green shore crab Carcinus maenas: Participation of Na+/K+-ATPase, V-type H+-ATPase and functional microtubules. J Exp Biol 205:2765–2775

    Article  CAS  PubMed  Google Scholar 

  • Weihrauch D, Fehsenfeld S, Quijada-Rodriguez AR (2017) Nitrogen excretion in aquatic crustaceans. In: Weihrauch D, O’Donnell MJ (eds) Acid-base balance and nitrogen excretion in invertebrates, 1st edn. Springer, Gewerbestrasse, pp 2–21

    Chapter  Google Scholar 

  • Weiner ID, Verlander JW (2011) Role of NH3 and NH4+ transporters in renal acid-base transport. Am J Physiol - Ren Physiol 300:F11–F23

    Article  CAS  Google Scholar 

  • Weiner ID, Verlander JW (2013) Renal ammonia metabolism and transport. Compr Physiol 3:201–220

    Article  PubMed  PubMed Central  Google Scholar 

  • Wieser W, Schweizer G, Hartenstein R (1969) Patterns in the release of gaseous ammonia by terrestrial isopods. Oecologia 3:390–400

    Article  CAS  PubMed  Google Scholar 

  • Wilkie MP (1997) Mechanisms of ammonia excretion across fish gills. Comp Biochem Physiol A 118:39–50

    Article  Google Scholar 

  • Wolcott DL (1991) Nitrogen excretion is enhanced during urine recycling in two species of terrestrial crab. J Exp Zool 259:181–187

    Article  Google Scholar 

  • Wolcott TG (1992) Water and solute balance in the transition to land. Am Zool 32:428–437

    Article  Google Scholar 

  • Wood CM, Boutilier RG (1985) Osmoregulation, ionic exchange, blood chemistry, and nitrogenous waste excretion in the land crab Cardisoma carnifex: a field and laboratory study. Biol Bull 169:267–290

    Article  Google Scholar 

  • Wood CM, Boutilier RG, Randall DJ (1986) The physiology of dehydration stress in the land crab, Cardisoma carnifex: Respiration, ionoregulation, acid-base balance and nitrogenous waste excretion. J Exp Biol 126:271–296

    Article  CAS  Google Scholar 

  • Wright JC, O’Donnell MJ (1992) Osmolality and electrolyte composition of pleon fluid in Porcellio scaber (Crustacea, Isopoda, Oniscidea): implications for water vapour absorption. J Exp Biol 164:189–203

    Article  Google Scholar 

  • Wright JC, O’Donnell MJ (1993) Total ammonia concentration and pH of haemolymph, pleon fluid and maxillary urine in Porcellio scaber Lattreille (Isopoda, Oniscidea): relationships to ambient humidity and water vapour uptake. J Exp Biol 176:233–246

    Article  CAS  Google Scholar 

  • Wright JC, Peña-Peralta M (2005) Diel variation in ammonia excretion, glutamine levels, and hydration status in two species of terrestrial isopods. J Comp Physiol B 175:67–75

    Article  CAS  PubMed  Google Scholar 

  • Wright PA, Wood CM (2012) Seven things fish know about ammonia and we don’t. Respir Physiol Neurobiol 184:231–240

    Article  CAS  PubMed  Google Scholar 

  • Young-Lai W, Charmantier-Daures M, Charmantier G (1991) Effect of ammonia on survival and osmoregulation in different life stages of the lobster Homarus americanus. Mar Biol 110:293–300

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Nick Chaung for help locating and obtaining the crabs used in this study as well as E-Hong Instruments (Taipei, Taiwan) for allowing us to use their atomic absorption spectrophotometer throughout these experiments.

Funding

G.J.P.A. was funded by a National Science and Engineering Research Council (NSERC) CGS-D and the University of Manitoba’s Field Work Support Program, D.W. was funded by an NSERC Discovery grant (RGPIN/5013‐2018).

Author information

Authors and Affiliations

Authors

Contributions

GJPA designed the study, performed experiments, and wrote the manuscript. M-CW performed some cation measurements and amino acid measurements. Y-CT and DW helped design the experiment, revise the manuscript, and funded the research.

Corresponding author

Correspondence to Dirk Weihrauch.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by G. Heldmaier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.en(0016896)

Supplementary material 1 (MP4 5619 kb)

SI Figure 1.

Hemolymph (N = 6–12) and urinary (N = 4-12) essential amino acid composition of immersed (0-h) and emersed crabs over a 160-hour time-course exposure. Where data in not available for urinary concentrations no detectable amino acid presence was found. Values are represented as the mean ± S.E.M. (JPG 43 KB)

SI Figure 2.

Hemolymph (N = 6–12) non-essential amino acid composition of immersed (0-h) and emersed crabs over a 160-hour time-course exposure. Where data in not available for urinary concentrations no detectable amino acid presence was found. Values are represented as the mean ± S.E.M. (JPG 80 KB)

SI Figure 3.

Urinary (N = 4–12) non-essential amino acid composition of immersed (0-h) and emersed crabs over a 160-hour time-course exposure. Where data in not available for urinary concentrations no detectable amino acid presence was found. Values are represented as the mean ± S.E.M. (JPG 64 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, G.J.P., Wang, MC., Tseng, YC. et al. Effects of emersion on acid–base regulation, osmoregulation, and nitrogen physiology in the semi-terrestrial mangrove crab, Helice formosensis. J Comp Physiol B 191, 455–468 (2021). https://doi.org/10.1007/s00360-021-01354-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-021-01354-0

Keywords

Navigation