Skip to main content
Log in

Ventilatory responses of the clown knifefish, Chitala ornata, to arterial hypercapnia remain after gill denervation

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The aim of this study was to corroborate the presence of CO2/H+-sensitive arterial chemoreceptors involved in producing air-breathing responses to aquatic hypercarbia in the facultative air-breathing clown knifefish (Chitala ornata) and to explore their possible location. Progressively increasing levels of CO2 mixed with air were injected into the air-breathing organ (ABO) of one group of intact fish to elevate internal PCO2 and decrease blood pH. Another group of fish in which the gills were totally denervated was exposed to aquatic hypercarbia (pH ~ 6) or arterial hypercapnia in aquatic normocarbia (by injection of acetazolamide to increase arterial PCO2 and decrease blood pH). Air-breathing frequency, gill ventilation frequency, heart rate and arterial PCO2 and pH were recorded during all treatments. The CO2 injections into the ABO induced progressive increases in air-breathing frequency, but did not alter gill ventilation or heart rate. Exposure to both hypercarbia and acetazolamide post-denervation of the gills also produced significant air-breathing responses, but no changes in gill ventilation. While all treatments produced increases in arterial PCO2 and decreases in blood pH, the modest changes in arterial PCO2/pH in the acetazolamide treatment produced the greatest increases in air-breathing frequency. These results strengthen the evidence that internal CO2/H+ sensing is involved in the stimulation of air breathing in clown knifefish and suggest that it involves extra-branchial chemoreceptors possibly situated either centrally or in the air-breathing organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah SJ, Thomas BJ, Jonz MG (2015) Aquatic surface respiration and swimming behaviour in adult and developing zebrafish exposed to hypoxia. J Exp Biol 218:777–1786

    Google Scholar 

  • Babiker M (1979) Respiratory behaviour, oxygen consumption and relative dependence on aerial respiration in the African lungfish (Protopterus annectens, owen) and an air-breathing teleost (Clarias lazera, C.). Hydrobiologia 65(2):177–187

    Google Scholar 

  • Bayley M, Damsgaard C, Thomsen M, Malte H, Wang T (2019) Learning to air-breathe: the first steps. Physiology 34:14–29

    CAS  PubMed  Google Scholar 

  • Burleson ML (2009) Sensory innervation of the gills: O2-sensitive chemoreceptors and mechanoreceptors. Acta Histochem 111:196–206

    PubMed  PubMed Central  Google Scholar 

  • Burleson ML, Milsom WK (1993) Sensory receptors in the first gill arch of rainbow trout. Respir Physiol 93:97–110

    CAS  PubMed  Google Scholar 

  • Burleson ML, Smatresk NJ (1990) Effects of sectioning cranial nerves IX and X on cardiovascular and ventilatory responses to hypoxia and NaCN in channel catfish. J Exp Biol 154:407–420

    Google Scholar 

  • Corcoran A, Wilson R, Harris M (2007) Central CO2/pH chemo-sensitivity in a modern air-breathing teleost; evidence in vitro and in vivo. Soc Neurosci Abstr 297:11

    Google Scholar 

  • Damsgaard C, Tuong DD, Thinh PV, Wang T, Bayley M (2015) High capacity for extracellular acid–base regulation in the air-breathing fish Pangasianodon hypophthalmus. J Exp Biol 218(9):1290–1294

    PubMed  Google Scholar 

  • de Lima Boijink C, Florindo LH, Leite CA, Kalinin AL, Milsom WK, Rantin FT (2010) Hypercarbic cardiorespiratory reflexes in the facultative air-breathing fish jeju (Hoplerythrinus unitaeniatus): the role of branchial CO2 chemoreceptors. J Exp Biol 213(Pt 16):2797–2807. https://doi.org/10.1242/jeb.040733

    Article  CAS  PubMed  Google Scholar 

  • Dehadrai PV (1962) Respiratory function of the swimbladder of Notopterus (Lacépède). In: Paper presented at the proceedings of the zoological society of London, vol 139, no 2. Blackwell Publishing Ltd, Oxford, UK, pp 341–357

    Google Scholar 

  • Dejours P (1981) Principles of comparative respiratory physiology, 2nd edn. Elsevier Science & Technology, Amsterdam

    Google Scholar 

  • Delaney R, Lahiri S, Fishman A (1974) Aestivation of the African lungfish Protopterus aethiopicus: cardiovascular and respiratory functions. J Exp Biol 61(1):111–128

    CAS  PubMed  Google Scholar 

  • Delaney RG, Shub C, Fishman AP (1976) Haematologic observations on the aquatic and aestivating African lungfish Protopterus aethiopicus. Copeia 1976:423–434

    Google Scholar 

  • DeLaney R, Lahiri S, Hamilton R, Fishman P (1977) Acid-base balance and plasma composition in the aestivating lungfish (Protopterus). Am J Physiol Regulat Integr Comp Physiol 232(1):R10–R17

    CAS  Google Scholar 

  • Florindo LH, Reid SG, Kalinin AL, Milsom WK, Rantin FT (2004) Cardiorespiratory reflexes and aquatic surface respiration in the neotropical fish tambaqui (Colossoma macropomum): acute responses to hypercarbia. J Comp Physiol B 174(4):319–328

    PubMed  Google Scholar 

  • Gam LTH, Jensen FB, Huong DTT, Phuong NT, Bayley M (2018) The effects of elevated environmental CO2 on nitrite uptake in the air-breathing clown knifefish, Chitala ornata. Aquat Toxicol 196:124–131

    CAS  PubMed  Google Scholar 

  • Gilmour KM (2001) The CO2/pH ventilatory drive in fish. Comp Biochem Physiol Part A Mol Integr Physiol 130(2):219–240

    CAS  Google Scholar 

  • Gilmour K, Milsom W, Rantin F, Reid S, Perry S (2005) Cardiorespiratory responses to hypercarbia in tambaqui Colossoma macropomum: chemoreceptor orientation and specificity. J Exp Biol 208(6):1095–1107

    CAS  PubMed  Google Scholar 

  • Graham JB, Baird TA (1982) The transition to air breathing in fishes: I. Environmental effects on the facultative air breathing of Ancistrus chagresi and Hypostomus plecostomus Loricariidae. J Exp Biol 96(1):53–67

    Google Scholar 

  • Graham JB (ed) (1997) Air-breathing fishes: evolution, diversity, and adaptation. Elsevier

  • Graham M, Turner J, Wood C (1990) Control of ventilation in the hypercapnic skate Raja ocellata: I. Blood and extradural fluid. Respir Physiol 80(2–3):259–277

    CAS  PubMed  Google Scholar 

  • Hedrick MS, Jones DR (1999) Control of gill ventilation and air-breathing in the bowfin Amia calva. J Exp Biol 202(1):87–94

    CAS  PubMed  Google Scholar 

  • Hedrick M, Burleson M, Jones D, Milsom W (1991) An examination of central chemosensitivity in an air-breathing fish (Amia calva). J Exp Biol 155(1):165–174

    Google Scholar 

  • Heisler N, Toews DP, Holeton GF (1988) Regulation of ventilation and acid-base status in the elasmobranch Scyliorhinus stellaris during hyperoxia-induced hypercapnia. Respir Physiol 71(2):227–246

    CAS  PubMed  Google Scholar 

  • Hoffman M, Harris MB, Taylor BE (2009) Characterization and validation of aerial respiration and central CO2 chemosensitivity in the Alaska blackfish, Dallia pectoralis. FASEB J 23(1 Supplement):598.516

    Google Scholar 

  • Jesse MJ, Shub C, Fishman AP (1967) Lung and gill ventilation of the African lung fish. Respir Physiol 3(3):267–287

    CAS  PubMed  Google Scholar 

  • Johansen K (1966) Air breathing in the teleost Symbranchus marmoratus. Comp Biochem Physiol 18(2):383–395

    CAS  PubMed  Google Scholar 

  • Johansen K, Lenfant C, Grigg GC (1967) Respiratory control in the lungfish, Neoceratodus forsteri (Krefft). Comp Biochem Physiol 20(3):835–854

    Google Scholar 

  • Johansen K, Hanson D, Lenfant C (1970) Respiration in a primitive air breather, Amia calva. Respir Physiol 9(2):162–174

    CAS  PubMed  Google Scholar 

  • Jonz MG, Zachar PC, Da Fonte DF, Mierzwa AS (2015) Peripheral chemoreceptors in fish: a brief history and a look ahead. Comp Biochem Physiol Part A Mol Integr Physiol 186:27–38

    CAS  Google Scholar 

  • Li S, Lu X, Bush RT (2013) CO2 partial pressure and CO2 emission in the Lower Mekong River. J Hydrol 504:40–56

    CAS  Google Scholar 

  • Lomholt JP, Johansen K (1974) Control of breathing in Amphipnous cuchia, an amphibious fish. Respir Physiol 21(3):325–340

    CAS  PubMed  Google Scholar 

  • Lopes JM, de Lima Boijink C, Florindo LH, Leite CAC, Kalinin AL, Milsom WK, Rantin FT (2010) Hypoxic cardiorespiratory reflexes in the facultative air-breathing fish jeju (Hoplerythrinus unitaeniatus): role of branchial O2 chemoreceptors. J Comp Physiol B 180(6):797–811

    PubMed  Google Scholar 

  • McKendry J, Perry S (2001) Cardiovascular effects of hypercarbia in rainbow trout (Oncorhynchus mykiss): a role for externally oriented chemoreceptors. J Exp Biol 204(1):115–125

    CAS  PubMed  Google Scholar 

  • McKenzie DJ, Burleson ML, Randall DJ (1991) The effects of branchial denervation and pseudobranch ablation on cardioventilatory control in an air-breathing fish. J Exp Biol 161:347–365

    Google Scholar 

  • McMahon BR, Burggren WW (1987) Respiratory physiology of intestinal air breathing in the teleost fish Misgurnus anguillicaudatus. J Exp Biol 133(1):371–393

    Google Scholar 

  • Milsom WK (2012) New insights into gill chemoreception: receptor distribution and roles in water and air breathing fish. Respir Physiol Neurobiol 184(3):326–339

    CAS  PubMed  Google Scholar 

  • Milsom WK, Brill RW (1986) Oxygen sensitive afferent information arising from the first gill arch of yellowfin tuna. Respir Physiol 66:193–203

    CAS  PubMed  Google Scholar 

  • Perry SF, Gilmour KM (2002) Sensing and transfer of respiratory gases at the fish gill. J Exp Zool 293:249–263

    PubMed  Google Scholar 

  • Perry SF, Reid SG (2002) Cardiorespiratory adjustments during hypercarbia in rainbow trout Oncorhynchus mykiss are initiated by external CO2 receptors on the first gill arch. J Exp Biol 205(21):3357–3365

    CAS  PubMed  Google Scholar 

  • Perry SF, Gilmour KM, Swenson ER, Vulesevic B, Chew SF, Ip YK (2005) An investigation of the role of carbonic anhydrase in aquatic and aerial gas transfer in the African lungfish (Protopterus dolloi). J Exp Biol 208:3805–3815

    CAS  PubMed  Google Scholar 

  • Perry SF, Euverman R, Wang TAM, Chew SF, Ip YK, Gilmour KM (2008) Control of breathing in the African lungfish (Protopterus dolloi); a comparison of aquatic and cacooned (terrestrialized) animals. Respir Physiol Neurobiol 160:8–17

    CAS  PubMed  Google Scholar 

  • Phuong LM, Damsgaard C, Ishimatsu A, Wang T, Bayley M (2016) Recovery of blood gases and haematological parameters upon anaesthesia with benzocaine, MS-222 or Aqui-S in the air-breathing catfish Pangasianodon hypophthalmus. Ichthyol Res 1(64):84–92

    Google Scholar 

  • Poulsen AF, Hortle K, Valbo-Jorgensen J, Chan S, Chhuon C, Viravong S, Nguyen T (2004) Distribution and ecology of some important riverine fish species of the Mekong River Basin. MRC Tech Paper 10:116

    Google Scholar 

  • Qin F, Wang S, Hartono A, Svendsen HF, Chen C (2010) Kinetics of CO2 absorption in aqueous ammonia solution. Int J Greenhouse Gas Control 4(5):729–738

    CAS  Google Scholar 

  • Rahn H (1966) Aquatic gas exchange: theory. Respir Physiol 1(1–12):1966. https://doi.org/10.1016/0034-5687(66)90024-7

    Article  Google Scholar 

  • Reid SG, Sundin L, Kalinin AL, Rantin FT, Milsom WK (2000) Cardiovascular and respiratory reflexes in the tropical fish, traira (Hoplias malabaricus): CO2/pH chemoresponses. Respir Physiol 120(1):47–59

    CAS  PubMed  Google Scholar 

  • Sanchez A, Glass M (2001) Effects of environmental hypercapnia on pulmonary ventilation of the South American lungfish. J Fish Biol 58(4):1181–1189

    Google Scholar 

  • Sanchez A, Soncini R, Wang T, Koldkjaer P, Taylor EW, Glass ML (2001) The differential cardio-respiratory responses to ambient hypoxia and systemic hypoxaemia in the South American lungfish, Lepidosiren paradoxa. Comp Biochem Physiol Part A Mol Integr Physiol 130(4):677–687

    CAS  Google Scholar 

  • Sanchez A, Giusti H, Bassi M, Glass M (2005) Acid-base regulation in the South American lungfish Lepidosiren paradoxa: effects of prolonged hypercarbia on blood gases and pulmonary ventilation. Physiol Biochem Zool 78(6):908–915

    CAS  PubMed  Google Scholar 

  • Smith HW (1930) Metabolism of the lung-fish, Protopterus aethiopicus. J Biol Chem 88(1):97–130

    CAS  Google Scholar 

  • Soivio A, Nynolm K, Westman K (1975) A technique for repeated sampling of the blood of individual resting fish. J Exp Biol 63(1):207–217

    CAS  PubMed  Google Scholar 

  • Sundin L, Reid SG, Kalinin AL, Rantin FT, Milsom WK (1999) Cardiovascular and respiratory reflexes in the tropical fish, traira (Hoplias malabaricus): O2 chemoresponses. Respir Physiol 116:181–199

    CAS  PubMed  Google Scholar 

  • Sundin L, Reid SG, Rantin FT, Milsom WK (2000) Branchial receptors and cardiorespiratory reflexes in a neotropical fish, the tambaqui (Colossoma macropomum). J Exp Biol 203(7):1225–1239

    CAS  PubMed  Google Scholar 

  • Thomas S, Le Ruz H (1982) A continuous study of rapid changes in blood acid–base status of trout during variations of water PCO2. J Comp Physiol B 148:123–130

    CAS  Google Scholar 

  • Thomsen MT, Wang T, Milsom WK, Bayley M (2017) Lactate provides a strong pH-independent ventilatory signal in the facultative air-breathing teleost Pangasianodon hypophthalmus. Sci Rep 7(1):6378

    PubMed  PubMed Central  Google Scholar 

  • Tuong DD, Borowiec B, Clifford AM, Filogonio R, Somo D, Huong DTT, Phuong NT, Wang T, Bayley M, Milsom WK (2018a) Ventilatory responses of the clown knifefish, Chitala ornata, to hypercarbia and hypercapnia. J Comp Physiol B 188:581–589

    PubMed  Google Scholar 

  • Tuong DD, Ngoc TB, Huynh VTN, Phuong NT, Hai TN, Wang T, Bayley M (2018b) Clown knifefish (Chitala ornata) oxygen uptake and its partitioning in present and future temperature environments. Comp Biochem Physiol Part A Mol Integr Physiol 216:52–59

    CAS  Google Scholar 

  • Ultsch GR (1987) The potential role of hypercarbia in the transition from water-breathing to air-breathing in vertebrates. Evolution 41(2):442–445

    PubMed  Google Scholar 

  • Vidthayanon C (2012) Chitala ornata. The IUCN red list of threatened species. https://doi.org/10.2305/IUCN.UK.2012-1.RLTS.T181056A1693604.en

    Article  Google Scholar 

  • Viet TV (2015) Applications of GIS for evaluation the current culture status of Clown knife fish (Chitala ornata) in Phung Hiep District, Hau Giang Province. J Can Tho Univ 38:109–115

    Google Scholar 

  • Wilson R, Harris M, Remmers J, Perry S (2000) Evolution of air-breathing and central CO(2)/H (+) respiratory chemosensitivity: new insights from an old fish? J Exp Biol 203(22):3505–3512

    CAS  PubMed  Google Scholar 

  • Wood C, Munger R (1994) Carbonic anhydrase injection provides evidence for the role of blood acid-base status in stimulating ventilation after exhaustive exercise in rainbow trout. J Exp Biol 194(1):225–253

    CAS  PubMed  Google Scholar 

  • Wood C, Turner J, Munger R, Graham M (1990) Control of ventilation in the hypercapnic skate Raja ocellata: II. cerebrospinal fluid and intracellular pH in the brain and other tissues. Respir Physiol 80(2–3):279–297

    CAS  PubMed  Google Scholar 

  • Zaconne G, Lauriano ER, Capillo G, Kuciel M (2018) Air- breathing in fish: air-breathing organs and control of respiration. Nerves and neurotransmitters in the air-breathing organs and the skin. Acta Histochem 120:630–641

    Google Scholar 

  • Zhang L, Nawata CM, De Boeck G, Wood CM (2015) Rh protein expression in branchial neuroepithelial cells, and the role of ammonia in ventilatory control in fish. Comp Biochem Physiol A 186:39–51

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Danish Ministry of Foreign Affairs: Danida fellowship Centre Project 272 number: DFC 12-014 AU iAQUA, The Danish International Development Agency (DANIDA) and by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang Diem Tuong.

Additional information

Communicated by B. Pelster.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dang Diem Tuong and Do Thi Thanh Huong are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuong, D.D., Huong, D.T.T., Phuong, N.T. et al. Ventilatory responses of the clown knifefish, Chitala ornata, to arterial hypercapnia remain after gill denervation. J Comp Physiol B 189, 673–683 (2019). https://doi.org/10.1007/s00360-019-01236-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-019-01236-6

Keywords

Navigation