Skip to main content
Log in

Multiscale Clustering for Functional Data

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

In an era of massive and complex data, clustering is one of the most important procedures for understanding and analyzing unstructured multivariate data. Classical methods such as K-means and hierarchical clustering, however, are not efficient in grouping data that are high dimensional and have inherent multiscale structures. This paper presents new clustering procedures that can adapt to multiscale characteristics and high dimensionality of data. The proposed methods are based on a novel combination of multiresolution analysis and functional data analysis. As the core of the methodology, a clustering approach using the concept of multiresolution analysis may reflect both the global trend and local activities of data, and functional data analysis handles the high-dimensional data efficiently. Practical algorithms to implement the proposed methods are further discussed. The empirical performance of the proposed methods is evaluated through numerical studies including a simulation study and real data analysis, which demonstrates promising results of the proposed clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Antoniadis, A., Brossat, X., Cugliari, J., Poggi, J. M. (2013). Clustering functional data using wavelets. International Journal of Wavelets, Multiresolution and Information Processing, 11(01), 1350003.

    Article  MathSciNet  Google Scholar 

  • Chiou, J. M., & Li, P. L. (2007). Functional clustering and identifying substructures of longitudinal data. Journal of the Royal Statistical Society Series B, 69, 679–699.

    Article  MathSciNet  Google Scholar 

  • Floriello, D., & Vitelli, V. (2017). Sparse clustering of functional data. Journal of Multivariate Analysis, 154, 1–18.

    Article  MathSciNet  Google Scholar 

  • Giacofci, M., Lambert–Lacroix, S., Marot, G., Picard, F. (2013). Wavelet–based clustering for mixed–effects functional models in high dimension. Biometrics, 69, 31–40.

    Article  MathSciNet  Google Scholar 

  • Hansen, J., Ruedy, R., Sato, M., Lo, K. (2010). Global surface temperature change. Reviews of Geophysics, 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Huang, N. E., & Shen, S. S. P. (2005). Hilbert-Huang transform and its applications. Singapore: World Scientific.

    Book  Google Scholar 

  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., Liu, H. H. (1998). The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society of London A, 454, 903–995.

    Article  MathSciNet  Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.

    Article  Google Scholar 

  • James, G. M., & Sugar, C. A. (2003). Clustering for sparsely sampled functional data. Journal of the American Statistical Association, 98, 397–408.

    Article  MathSciNet  Google Scholar 

  • Jaques, J., & Preda, C. (2013). Functional data clustering: a survey. Advances in Data Analysis and Classification, 8, 231–255.

    Article  MathSciNet  Google Scholar 

  • Lee, T. C. M. (2004). Improved smoothing spline regression by combining estimates of different smoothness. Statistics & Probability Letters, 67, 133–140.

    Article  MathSciNet  Google Scholar 

  • Mallat, S. (2009). A wavelet tour of signal processing, 3rd. New York: Academic Press.

    MATH  Google Scholar 

  • Morris, J. S., & Carroll, R. J. (2006). Wavelet-based functional mixed models. Journal of the Royal Statistical Society, Series B, 68, 179–199.

    Article  MathSciNet  Google Scholar 

  • Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846–850.

    Article  Google Scholar 

  • Ray, S., & Mallick, B. (2006). Functional clustering by Bayesian wavelet methods. Journal of the Royal Statistical Society, Series B, 68, 305–332.

    Article  MathSciNet  Google Scholar 

  • Tibshirani, R., Walther, G., Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society, Series B, 63, 411–423.

    Article  MathSciNet  Google Scholar 

  • Wand, M. P. (2000). A comparison of regression spline smoothing procedures. Computational Statistics, 15, 443–462.

    Article  MathSciNet  Google Scholar 

  • Wakefield, J., Zhou, C., Self, S. (2003). Modelling gene expression over time: curve clustering with informative prior distributions. Bayesian Statistics, 7, 721–732.

    MathSciNet  Google Scholar 

  • Witten, D. M., & Tibshirani, R. (2010). A framework for feature selection in clustering. Journal of the American Statistical Association, 105, 713–726.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the Editor and referees for comments which led to a substantially improved manuscript. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea government (NRF- 2016R1C1B1006572 and NRF-2018R1D1A1B07042933) and by NIH grants (R01HL111195 and R01MH109496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Seok Oh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Y., Oh, HS. & Cheung, Y.K. Multiscale Clustering for Functional Data. J Classif 36, 368–391 (2019). https://doi.org/10.1007/s00357-019-09313-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-019-09313-9

Keywords

Navigation