Skip to main content

Advertisement

Log in

Intertemporal poverty comparisons

  • Published:
Social Choice and Welfare Aims and scope Submit manuscript

Abstract

The paper deals with poverty orderings when multidimensional attributes exhibit some degree of comparability. The paper focuses on an important special case of this, that is, comparisons of poverty that make use of incomes at different time periods. The ordering criteria extend the power of earlier multidimensional dominance tests by making (reasonable) assumptions on the relative marginal contributions of each time dimension to poverty. Inter alia, this involves drawing on natural symmetry and asymmetry assumptions as well as on the mean/variability framework commonly used in the risk literature. The resulting procedures make it possible to check for the robustness of poverty comparisons to choices of intertemporal aggregation procedures and to areas of intertemporal poverty frontiers. The results are illustrated using a rich sample of 23 European countries over 2006–2009.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Though intertemporal poverty is the most widely used name for that concept, it is sometimes also called “longitudinal poverty” (Busetta et al. 2011; Busetta and Mendola 2012) or “lifetime poverty” (Hoy et al. 2012) in the literature.

  2. See for instance Foster (2009), Calvo and Dercon (2009), Hoy et al. (2012), Duclos et al. (2010), Bossert et al. (2012), Busetta and Mendola (2012), and Dutta et al. (2013), but analogously to Hoy and Zheng (2011), though within a rather different—time-additive—framework.

  3. See, in the recent literature, Atkinson et al. (2002), Chaudhuri et al. (2002), Ligon and Schechter (2003), Cruces and Wodon (2003), Bourguignon et al. (2004), Christiaensen and Subbarao (2004), and Kamanou and Morduch (2004).

  4. For expositional simplicity, we focus on the case of two dimensions of individual well-being. Extensions to cases with more than two dimensions are discussed in footnotes.

  5. For the unidimensional case, see Foster and Shorrocks (1991).

  6. Ravallion (2011) only deals with the case of linear aggregation using a fixed set of prices, but the use of well-being functions like \(\lambda \) could also be considered.

  7. Notable exceptions are Zheng (2012) and Dutta et al. (2013).

  8. This continuity assumption therefore precludes most members of the Alkire and Foster (2011a) family of poverty indices from being part of \(\ddot{\varPi }(\lambda ^+)\).

  9. As noted in Duclos et al. (2006), we must also have that \(\pi ^{(1)}<0,\, \pi ^{(2)}< 0\), and \(\pi ^{(1,2)}>0\) over some ranges of \(x_1\) and \(x_2\) for the indices to be non-degenerate.

  10. To our knowledge, the literature has failed until now to provide robust rankings of poverty across areas of poverty frontiers when complementarity of dimensions is allowed—such robustness is, however, not needed in the context of social welfare comparisons, see Atkinson and Bourguignon (1982) for instance.

  11. Note also that, in Roberts (1980)’s terminology on interpersonal comparability, the assumptions made in (4) require only ordinality and non-comparability of the dimensions. This is equivalent to saying that strictly monotonically increasing transformations of the dimensional indicators should not affect social welfare rankings.

  12. Note that the need to compare the different values of \(x_1\) and \(x_2\) imposes the relatively weak assumption of “ordinality and level comparability” of the dimensions in a setting similar to that of Roberts (1980). An example of this is when \(x_1\) and \(x_2\) represent the health status of an individual at two points in time and when we need to be able to tell whether a value \(a\) at the first period is lower or larger than a value \(b\) at the second period. It would seem that such comparability is possible with many indicators of well-being, including those based on education or health and those involving different income sources and different recipients of these incomes in the same household.

  13. Extending Proposition 2 to cases with more than two dimensions is relatively straightforward. For instance, if symmetry is assumed with three dimensions, one has to compare the sum of the joint distributions for the six permutations of each possible set of per-period poverty lines, that is \(F(u,v,w)+F(u,w,v)+F(v,u,w)+F(v,w,u)+F(w,u,v)+F(w,v,u)\).

  14. In the tridimensional case mentioned in footnote 13, multiple counting also occurs but in a more complex manner. Those individuals whose incomes are less than \(z^*\) in each period are counted six times when checking dominance. Double counting occurs for those poor individuals whose incomes are below \(z^*\) during only two periods of time. The multidimensional dominance criterion thus introduces weights on poor households that depend on the number of periods of deprivations that they experience. Because of this, the social benefit of decreasing individual deprivation increases with the number of income shortfalls (with respect to \(z^*\)): a two-period-deprived person is twice as important as a single-period-deprived person, and a three-period-deprived person is thrice as important as a two-period-deprived person.

  15. These definitions of \(\mu \) and \(\tau \) mean that the two dimensions are necessarily fully comparable in the sense of Roberts (1980).

  16. See Zheng (2007) for more on this.

  17. While the cases of \(\eta \) equal to \(1\) and \(0\) can easily be understood, intermediate cases are more difficult. For instance, with \(\eta =0.5\), inequality will be preserved when moving from \(\mu _1\) to \(\mu _2\) if each additional euro is distributed in the following manner between the two periods: fifty cents are distributed proportionally to the shares of each period in total income and the remaining fifty cents are equally shared; then fifty cents are allocated according to the new income shares and the remaining fifty cents are equally distributed, and so on until the individual’s mean income is \(\mu _2\).

  18. Were these conditions not met, it would be possible for some income profiles to leave the poverty domain by an increase in intertemporal variability.

  19. Although not as straightforward as with the poverty indices of Sect. 2, extending this mean/variability framework to \(T>2\) periods can be done. Let \(\mu _k\) be the average value of the \(k=1,\dots T\) lowest values of an income profile. \(\mu _1\) is thus the minimal value of the income profile and \(\mu _T=\mu \) is average income. Then, define \(\tau _{k,\eta }:=\frac{\mu _k-\mu }{\mu ^\eta }\), with \(\tau _{k,\eta }\in [-\mu ^{1-\eta },0]\). It can be seen that for each income profile of size \(T\), only \(T-1\) observations of inequality are needed to describe all relevant intertemporal inequalities. So an income profile \((x_1,x_2\dots , x_T)\) can be fully described in terms of intertemporal inequalities and average income by the \(T\)-vector \((\tau _{1,\eta },\tau _{2,\eta }\dots ,\tau _{T-1,\eta },\mu )\).

    If income timing matters for poverty assessment (as for asymmetric poverty indices), this vector will not be sufficient. For instance, in the three-period case, it would be necessary to make use of \(3!=6\) possibly different individual poverty indices \(\rho _{s,t}\), where \(s\) indicates the period of the lowest income and \(t\) is the period for the second-lowest income. Once this is done, generalizing Propositions 47 is relatively straightforward.

  20. Equal weights for each deprivation are necessary in order to obtain individual poverty indices that are decreasing with respect to \(\tau _0\).

  21. Assuming \(x_1<x_2\), symmetry means that condition (36) can be expressed as:

    $$\begin{aligned} \pi ^{(1)}(x_1,x_2) \le \pi ^{(1)}(x_2,x_1). \end{aligned}$$
    (38)

    At the same time, we know that \(\pi ^{(1,2)}(x_1,x_2)\ge 0\), i.e. \(\pi ^{(1)}(x_1,x_1) - \pi ^{(1)}(x_1,x_2) \le 0\). Combining this with (38) yields:

    $$\begin{aligned} \pi ^{(1)}(x_1,x_1) \le \pi ^{(1)}(x_2,x_1). \end{aligned}$$
    (39)

    which implies that second-order derivatives of \(\pi \) are non-negative \(\forall (x_1,x_2)\).

  22. The countries are: Austria (AT), Belgium (BE), Bulgaria (BG), Cyprus (CY), Czech Republic (CZ), Denmark (DK), Estonia (EE), Spain (ES), Finland (FI), France (FR), Hungary (HU), Iceland (IS), Italy (IT), Latvia (LV), Lithuania (LT), Malta (MT), Netherlands (NL), Norway (NO), Poland (PL), Portugal (PT), Slovenia (SI), Sweden (SE), and United Kingdom (UK).

  23. Incomes were censored at the bottom, so that our results should be regarded as restricted dominance tests (see Davidson and Duclos 2012, for theoretical and practical arguments). Censoring was applied at the second centile of the pooled distribution of incomes in 2006 and 2009, that is, at around €2,100 per person and per year.

  24. This figure is almost exactly equal to Italy’s median income over the period. This choice is quite conservative but would undoubtedly meet unanimous agreement as a value above which an individual cannot be considered as deprived in the European context.

  25. Detailed results are provided in Appendix 4, Table 1.

  26. More specifically, we consider poverty indices from \(\tilde{\varPi }_S(\tilde{\lambda }_S)\) such that \(\rho _t^{(2)}(\mu ,\tau _\eta )=\rho _t^{(1,2)}(\mu ,\tau _\eta )=0\) \(\forall t=1,2\). It can then be easily be seen from Eq. (81) in Appendix 2 that the poverty domain is necessarily defined as the set of income profiles such that \(\mu <z^*\). Moreover, the corresponding dominance relationship compares the cumulative distribution of mean income up to a maximum value \(z^+\) for the two populations.

References

  • Alkire S, Foster J (2011a) Counting and multidimensional poverty measurement. J Public Econ 95(7–8):476–487

    Article  Google Scholar 

  • Alkire S, Foster J (2011b) Understandings and misunderstandings of multidimensional poverty measurement. J Econ Inequal 9(2):289–314

    Article  Google Scholar 

  • Atkinson A (1992) Measuring poverty and differences in family composition. Economica 59(233):1–16

    Article  Google Scholar 

  • Atkinson AB, Bourguignon F (1987) Income distribution and differences in needs. In: Feiwel GR (ed) Arrow and the foundations of the theory of economic policy. Macmillan, New York, pp 350–370

    Google Scholar 

  • Atkinson A, Bourguignon F (1982) The comparison of multi-dimensioned distributions of economic status. Rev Econ Stud 49(2):183–201

    Article  Google Scholar 

  • Atkinson A, Cantillon B, Marlier E, Nolan B (2002) Social indicators: the EU and social inclusion. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bane M, Ellwood D (1986) Slipping into and out of poverty: the dynamics of spells. J Hum Resour 21(1):1–23

    Article  Google Scholar 

  • Bossert W, Chakravarty S, d’Ambrosio C (2012) Poverty and time. J Econ Inequal 10(2):145–162

    Article  Google Scholar 

  • Bourguignon F (1989) Family size and social utiliy: income distribution dominance criteria. J Econom 42(1):67–80

    Article  Google Scholar 

  • Bourguignon Fr, Chakravarty S (2003) The measurement of multidimensional poverty. J Econ Inequal 1(1):25–49

    Article  Google Scholar 

  • Bourguignon F, Goh C-C, Kim DI (2004) Estimating individual vulnerability to poverty with pseudo-panel data. Discussion Paper, World Bank, Washington DC

  • Busetta A, Mendola D (2012) The importance of consecutive spells of poverty: a path-dependent index of longitudinal poverty. Rev Income Wealth 58(2):355–374

    Article  Google Scholar 

  • Busetta A, Mendola D, Milito AM (2011) Combining the intensity and sequencing of the poverty experience: a class of longitudinal poverty indices. J R Stat Soc 174(4):953–973

    Article  Google Scholar 

  • Calvo C, Dercon S (2009) Chronic poverty and all that: the measurement of poverty over time. In: Addison T, Hulme D, Kanbur R (eds) Poverty dynamics: interdisciplinary perspectives. Oxford University Press, Oxford, pp 29–58 chapter 2

    Chapter  Google Scholar 

  • Chakravarty S, Deutsch J, Silber J (2008) On the Watts multidimensional poverty index and its decomposition. World Dev 36(6):1067–1077

    Article  Google Scholar 

  • Chakravarty S, Mukherjee D, Ranade R (1998) On the family of subgroup and factor decomposable measures of multidimensional poverty. In: Slottje D (ed) Research on economic inequality, vol 8. JAI Press, Amsterdam, pp 175–194

    Google Scholar 

  • Chaudhuri S, Jalan J, Suryahadi A (2002) Assessing household vulnerability to poverty from cross-sectional data: a methodology and estimates from indonesia. Discussion Paper 0102–52, Columbia University, New York

  • Christiaensen L, Subbarao K (2004) Toward an understanding of household vulnerability in rural kenya, Policy Research Working Paper 3326, World Bank.

  • Cruces G, Wodon Q (2003) Transient and chronic poverty in turbulent times: Argentina 1995–2002. Econ Bull 9(3):1–12

    Google Scholar 

  • Davidson R, Duclos J-Y (2012) Testing for restricted stochastic dominance. Econom Rev 32:84–125

    Article  Google Scholar 

  • Duclos J-Y, Araar A, Giles J (2010) Chronic and transient poverty: measurement and estimation, with evidence from China. J Dev Econ 91(2):266–277

    Article  Google Scholar 

  • Duclos J-Y, Sahn D, Younger S (2006) Robust multidimensional poverty comparisons. Econ J 116:943–968

    Article  Google Scholar 

  • Dutta I, Roope L, Zank H (2013) On intertemporal poverty measures: the role of affluence and want. Soc Choice Welf 41(4):741–762

    Article  Google Scholar 

  • Foster J (2009) A class of chronic poverty measures. In: Addison T, Hulme D, Kanbur R (eds) Poverty dynamics: interdisciplinary perspectives. Oxford University Press, Oxford, pp 59–76 chapter 3

    Chapter  Google Scholar 

  • Foster J, Shorrocks A (1991) Subgroup consistent poverty indices. Econometrica 59(3):687–709

    Article  Google Scholar 

  • Hoy M, Thompson B, Zheng B (2012) Empirical issues in lifetime poverty measurement. J Econ Inequal 10:163–189

    Article  Google Scholar 

  • Hoy M, Zheng B (2011) Measuring lifetime poverty. J Econ Theory 146(6):2544–2562

    Article  Google Scholar 

  • Hulme D, Shepherd A (2003) Conceptualizing chronic poverty. World Dev 31(3):403–423

    Article  Google Scholar 

  • Jalan J, Ravallion M (1998) Transient poverty in postreform rural China. J Comp Econ 26:338–357

    Article  Google Scholar 

  • Kamanou G, Morduch J (2004) Measuring vulnerability to poverty. Oxford University Press, Oxford

    Book  Google Scholar 

  • Kolm S-C (1976) Unequal inequalities I. J Econ Theory 12:416–442

    Article  Google Scholar 

  • Krtscha M (1994) A new compromise measure of inequality. In: Eichhorn W (ed) Models and measurement of welfare and inequality. Springer, New York, pp 111–119

    Chapter  Google Scholar 

  • Ligon E, Schechter L (2003) Measuring vulnerability. Econ J 113:C95–C102

    Article  Google Scholar 

  • Ramsey F (1928) A mathematical theory of saving. Econ J 38(152):543–559

    Article  Google Scholar 

  • Ravallion M (2011) On multidimensional indices of poverty. J Econ Inequal 9(2):235–248

    Article  Google Scholar 

  • Roberts KWS (1980) Interpersonal comparability and social choice theory. Rev Econ Stud 47(2):421–439

    Article  Google Scholar 

  • Rodgers J, Rodgers J (1993a) Chronic poverty in the United States. J Hum Resour 28(1):25–54

    Article  Google Scholar 

  • Rodgers J, Rodgers J (1993b) Chronic poverty in the united states. J Hum Resour 28(1):25–54

    Article  Google Scholar 

  • Solow R (1974) The economics of resources and the resources of economics. Am Econ Rev 62(2):1–14

    Google Scholar 

  • Tsui K-Y (2002) Multidimensional poverty indices. Soc Choice Welf 19(1):69–93

    Article  Google Scholar 

  • Yoshida T (2005) Social welfare rankings of income distributions: a new parametric concept of intermediate inequality. Soc Choice Welf 24(3):555–574

    Article  Google Scholar 

  • Zheng B (2007) Inequality orderings and unit-consistency. Soc Choice Welf 29(3):515–538

    Article  Google Scholar 

  • Zheng B (2012) Measuring chronic poverty: a gravitational approach. Working Paper, University of Colorado Denver.

  • Zoli C (2003) Characterizing inequality equivalence criteria. Working Paper, University of Nottingham, Nottingham.

Download references

Acknowledgments

This work was supported by the Agence Nationale de la Recherche of the French government through the program “Investissements d’avenir” ANR-10-LABX-14-01. This research was partly funded by Canada’s SSHRC and by Québec’s FRQSC. It was also carried out with support from the Poverty and Economic Policy (PEP) Research Network, which is financed by the Government of Canada through the International Development Research Centre (IDRC) and the Canadian International Development Agency (CIDA), and by the Australian Agency for International Development (AusAID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Bresson.

Appendices

Appendix 1: proof of propositions from Sect. 2

Let \(z_1(x_2)\) and \(z_2(x_1)\) be respectively the value of the first and second-period income, such that \(\lambda \bigr (x_1,z_2(x_1)\bigr )=0\) and \(\lambda \bigr (z_1(x_2),x_2\bigr )=0\). Thus, \(z_1\bigr (z_2(x_1)\bigr )=x_1\), and \(z_1\) is then the inverse of \(z_2\). Let \(z^*\) be the value of income such that \(\lambda (z^*,z^*)=0\). We then can define a two-period poverty index as a sum of low \(x_1\) (with respect to \(x_2\)) and of low \(x_2\) (with respect to \(x_1\)) time poverty:

$$\begin{aligned} P(\lambda )&= \int _0^{z^*} \int _{x_2}^{z_1(x_2)}\pi (x_1,x_2,\lambda )f(x_1,x_2) d x_{1} d x_{2}\nonumber \\&+ \int _0^{z^*} \int _{x_1}^{z_2(x_1)}\pi (x_1,x_2;\lambda ) f(x_1,x_2) d x_{2} d x_{1}. \end{aligned}$$
(46)

We first proceed with the first part of the right-hand term of (46). Integrating that expression by parts with respect to \(x_1\), we find:

$$\begin{aligned}&\int _0^{z^*} \int _{x_2}^{z_1(x_2)}\pi (x_1,x_2,\lambda )f(x_1,x_2) d x_{1} d x_{2}\nonumber \\&\quad = \int _0^{z^*} \bigl [\pi (x_1,x_2)F(x_1|x_2)\bigr ]_{x_1=x_2}^{x_1=z_1(x_2)} f(x_2)\; dx_2 \nonumber \\&\quad \quad -\int _0^{z^*} \int _{x_2}^{z_1(x_2)} \pi ^{(1)}(x_1,x_2) F(x_1|x_2) f(x_2)\; dx_1dx_2. \end{aligned}$$
(47)

Rearranging the first element of (47), we find

$$\begin{aligned}&\int _0^{z^*} \left[ \pi (x_1,x_2)F(x_1|x_2)\right] _{x_1=x_2}^{x_1=z_1(x_2)} f(x_2)\; dx_2 \nonumber \\&\quad = \int _0^{z^*} \Bigr (\pi \bigr (z_1(x_2),x_2\bigr ) F\bigr (z_1(x_2)|x_2\bigr ) - \pi (x_2,x_2)F(x_1=x_2|x_2)\Bigr ) f(x_2)\; dx_2 \end{aligned}$$
(48)
$$\begin{aligned}&\quad = - \int _0^{z^*} \pi (x_2,x_2)F(x_1=x_2|x_2)f(x_2)\; dx_2, \end{aligned}$$
(49)

since \(\pi \bigr (z_1(x_2),x_2\bigr )=0\).

To integrate the second part of the right-hand term of (47) by parts with respect to \(x_2\), let \(K(x_2)=\int _{x_2}^{z_1(x_2)} \pi ^{(1)}(x_1,x_2)\) \(F(x_1,x_2)\; dx_1\). We then get:

$$\begin{aligned} \frac{\partial K(x_2)}{\partial x_2}&= z_1'(x_2)\pi ^{(1)}\big (z_1(x_2),x_2\big ) F\big (z_1(x_2),x_2\big )\nonumber \\&\quad - \pi ^{(1)}(x_2,x_2) F(x_2,x_2) \nonumber \\&\quad + \int _{x_2}^{z_1(x_2)} \pi ^{(1,2)}(x_1,x_2) F(x_1,x_2)\; dx_1\nonumber \\&\quad + \int _{x_2}^{z_1(x_2)} \pi ^{(1)}(x_1,x_2) F(x_1|x_2)f(x_2)\; dx_1. \end{aligned}$$
(50)

Integrating that expression along \(x_2\) and over \([0,z^*]\) and rearranging, we have:

$$\begin{aligned}&\int _0^{z^*}\int _{x_2}^{z_1(x_2)} \pi ^{(1)}(x_1,x_2) F(x_1|x_2)f(x_2)\; dx_1dx_2 \end{aligned}$$
(51)
$$\begin{aligned}&= \,\bigr [K(x_2)\bigr ]_0^{z^*} - \int _0^{z^*} z_1'(x_2)\pi ^{(1)}\bigr (z_1(x_2),x_2\bigr ) F\bigr (z_1(x_2),x_2\bigr )\; dx_2 \nonumber \\&\quad + \int _0^{z^*}\pi ^{(1)}(x_2,x_2) F(x_2,x_2)\; dx_2 - \int _0^{z^*}\int _{x_2}^{z_1(x_2)} \pi ^{(1,2)}(x_1,x_2) F(x_1,x_2)\; dx_1dx_2, \end{aligned}$$
(52)
$$\begin{aligned}&= - \int _0^{z^*} z_1'(x_2)\pi ^{(1)}\bigr (z_1(x_2),x_2\bigr ) F\bigr (z_1(x_2),x_2\bigr )\; dx_2 \nonumber \\&\quad + \int _0^{z^*}\pi ^{(1)}(x_2,x_2) F(x_2,x_2)\; dx_2 - \int _0^{z^*}\int _{x_2}^{z_1(x_2)} \pi ^{(1,2)}(x_1,x_2) F(x_1,x_2)\; dx_1dx_2, \end{aligned}$$
(53)

since \(z_1(z^*) = z^*\) (hence \(K(z^*)=0\)) and \(F(x_1,0)=0\) \(\forall x_1\) (hence \(K(0)=0\)). Using (49) and (53), we obtain:

$$\begin{aligned}&\int _0^{z^*} \int _{x_2}^{z_1(x_2)}\pi (x_1,x_2,\lambda )f(x_1,x_2) d x_{1} d x_{2} \nonumber \\&= - \int _0^{z^*} \pi (x_2,x_2)F(x_1=x_2|x_2)f(x_2)\; dx_2 \nonumber \\&\quad +\int _0^{z^*} z_1'(x_2)\pi ^{(1)}\big (z_1(x_2),x_2\big ) F\big (z_1(x_2),x_2\big )\; dx_2 \nonumber \\&\quad - \int _0^{z^*}\pi ^{(1)}(x_2,x_2) F(x_2,x_2)\; dx_2 + \int _0^{z^*}\int _{x_2}^{z_1(x_2)} \pi ^{(1,2)}(x_1,x_2) F(x_1,x_2)\; dx_1dx_2. \end{aligned}$$
(54)

Proceeding similarly with the second part of the right-hand term of (46) and adding the above, we obtain:

$$\begin{aligned} P(\lambda )&= - \int _0^{z^*} \pi (x_2,x_2)F(x_1=x_2|x_2)f(x_2)\; dx_2\nonumber \\&\quad + \int _0^{z^*} z_1'(x_2)\pi ^{(1)}\big (z_1(x_2),x_2\big ) F\big (z_1(x_2),x_2\big )\; dx_2 \nonumber \\&\quad - \int _0^{z^*}\pi ^{(1)}(x_2,x_2) F(x_2,x_2)\; dx_2\nonumber \\&\quad + \int _0^{z^*}\int _{x_2}^{z_1(x_2)} \pi ^{(1,2)}(x_1,x_2) F(x_1,x_2)\; dx_1dx_2 \nonumber \\&\quad - \int _0^{z^*} \pi (x_1,x_1)F(x_2=x_1|x_1)f(x_1)\; dx_1 \nonumber \\&\quad +\int _0^{z^*} z_2'(x_1)\pi ^{(2)}\big (x_1,z_2(x_1)\big ) F\big (x_1,z_2(x_1)\big )\; dx_1 \nonumber \\&\quad - \int _0^{z^*}\pi ^{(2)}(x_1,x_1) F(x_1,x_1)\; dx_1\nonumber \\&\quad + \int _0^{z^*}\int _{x_1}^{z_2(x_1)} \pi ^{(1,2)}(x_1,x_2) F(x_1,x_2)\; dx_2dx_1. \end{aligned}$$
(55)

It can be observed that \(F(x_2=x_1|x_1)f(x_1) = \frac{\partial F(x_1,x_1)}{\partial x_1} - F(x_1|x_2=x_1)f(x_2=x_1)\), so that:

$$\begin{aligned}&\int _0^{z^*} \pi (x_1,x_1)F(x_2=x_1|x_1)f(x_1)\; dx_1 \nonumber \\&= \int _0^{z^*} \pi (x_1,x_1) \frac{\partial F(x_1,x_1)}{\partial x_1}\; dx_1 - \int _0^{z^*} \pi (x_1,x_1) F(x_1|x_2=x_1)f(x_2=x_1)\; dx_1 \end{aligned}$$
(56)
$$\begin{aligned}&= \left[ \pi (x_1,x_1)F(x_1,x_1)\right] _0^{z^*} -\int _0^{z^*} \left( \pi ^{(1)}(x_1,x_1)+\pi ^{(2)}(x_1,x_1)\right) F(x_1,x_1)\; dx_1\nonumber \\&\quad - \int _0^{z^*} \pi (x_1,x_1) F(x_1|x_2=x_1)f(x_2=x_1)\; dx_1 \end{aligned}$$
(57)
$$\begin{aligned}&= -\int _0^{z^*} \left( \pi ^{(1)}(x_1,x_1)+\pi ^{(2)}(x_1,x_1)\right) F(x_1,x_1)\; dx_1\nonumber \\&\quad - \int _0^{z^*} \pi (x_2,x_2) F(x_1=x_2|x_2)f(x_2)\; dx_2. \end{aligned}$$
(58)

Using that result and changing the integration variable in \(\int _0^{z^*}\pi ^{(2)}(x_2,x_2)\) \(F(x_2,x_2)\; dx_2\), we then have:

$$\begin{aligned} P(\lambda )&= \int _0^{z^*} z_2'(x_1)\pi ^{(2)}\big (x_1,z_2(x_1)\big ) F\big (x_1,z_2(x_1)\big )\; dx_1 \nonumber \\&\quad + \int _0^{z^*} z_1'(x_2)\pi ^{(1)}\big (z_1(x_2),x_2\big ) F\big (z_1(x_2),x_2\big )\; dx_2 \nonumber \\&\quad + \int _0^{z^*}\int _{x_1}^{z_2(x_1)} \pi ^{(1,2)}(x_1,x_2) F(x_1,x_2)\; dx_2dx_1 \nonumber \\&\quad + \int _0^{z^*}\int _{x_2}^{z_1(x_2)} \pi ^{(1,2)}(x_1,x_2) F(x_1,x_2)\; dx_1dx_2. \end{aligned}$$
(59)

1.1 Proof of Proposition 2

Symmetry implies the following properties:

$$\begin{aligned} \pi ^{(1)}(x_1,x_2)&= \pi ^{(2)}(x_2,x_1) \quad \forall x_1,x_2,\end{aligned}$$
(60)
$$\begin{aligned} \pi ^{(1,2)}(x_1,x_2)&=\pi ^{(1,2)}(x_2,x_1) \quad \forall x_1, x_2. \end{aligned}$$
(61)

At the poverty frontier, we also have \(\lambda ({x_1},{x_2})=0\) and \(\pi ^{(x_2)}\bigr (z_1(x_2),x_2\bigr ) = 0\). Since:

$$\begin{aligned} \pi ^{(x_2)}\bigr (z_1(x_2),x_2\bigr ) = z_1'(x_2)\pi ^{(1)}\bigr (z_1(x_2),x_2\bigr ) + \pi ^{(2)}\bigr (z_1(x_2),x_2\bigr ), \end{aligned}$$
(62)

we obtain:

$$\begin{aligned} z_1'(x_2)\pi ^{(1)}\bigr (z_1(x_2),x_2\bigr ) = - \pi ^{(2)}\bigr (z_1(x_2),x_2\bigr ). \end{aligned}$$
(63)

Symmetry also leads to \(z_1(x_2)=z_2(x_2)\) and \(z_1'(x_2) = z_2'(x_2)\). Using (60), we find that:

$$\begin{aligned} z_1'(x_2)\pi ^{(1)}\bigr (z_1(x_2),x_2\bigr ) = z_2'(x_2)\pi ^{(2)}\bigr (x_2, z_2(x_2)\bigr ). \end{aligned}$$
(64)

From the expression of \(P(\lambda )\) in (59), the symmetry assumptions therefore lead to:

$$\begin{aligned} P(\lambda )&= \int _0^{z^*} z_1'(x_2)\pi ^{(1)}\big (z_1(x_2),x_2\big ) \Bigr (F\big (z_1(x_2),x_2\big ) + F\bigr (x_2,z_1(x_2)\bigr )\Bigr )\; dx_2 \end{aligned}$$
(65)
$$\begin{aligned}&\quad + \int _0^{z^*}\int _{x_2}^{z_1(x_2)} \pi ^{(1,2)}(x_1,x_2) \bigr (F(x_1,x_2)+ F(x_2,x_1)\bigr )\; dx_1dx_2 \end{aligned}$$
(66)

The necessary and sufficient conditions for Proposition 2 follow upon inspection.

1.2 Proof of Proposition 3

With asymmetry, we assume that \(z_2(x_1) \ge z_1(x_1)\) for all \(x_1\in [0,z^*]\). Equation (46) can then be rewritten as:

$$\begin{aligned} P(\lambda )&= \int _0^{z^*} \int _{x_1}^{z_2(x_1)}\pi (x_1,x_2;\lambda ) f(x_1,x_2)\; d x_2 d x_1 \nonumber \\&\quad + \int _0^{z^*} \int _{x_2}^{z_2(x_2)}\pi (x_1,x_2,\lambda )f(x_1,x_2)\; d x_1 d x_2. \end{aligned}$$
(67)

Equation (59) then becomes:

$$\begin{aligned} P(\lambda )&= \int _0^{z^*} z_2'(x_1)\pi ^{(2)}\big (x_1,z_2(x_1)\big ) F\big (x_1,z_2(x_1)\big )\; dx_1 \nonumber \\&\quad + \int _0^{z^*} z_2'(x_2)\pi ^{(1)}\big (z_2(x_2),x_2\big ) F\big (z_2(x_2),x_2\big )\; dx_2 \nonumber \\&\quad + \int _0^{z^*}\int _{x_1}^{z_2(x_1)} \pi ^{(1,2)}(x_1,x_2) F(x_1,x_2)\; dx_2dx_1 \nonumber \\&\quad + \int _0^{z^*}\int _{x_2}^{z_2(x_2)} \pi ^{(1,2)}(x_1,x_2) F(x_1,x_2)\; dx_1dx_2. \end{aligned}$$
(68)

We obtain:

$$\begin{aligned} P(\lambda )&= \int _0^{z^*} z_2'(x_1)\pi ^{(2)}\big (z_2(x_1),x_1\big ) \left[ F\big (z_2(x_1),x_1\big ) +F\big (x_1,z_2(x_1)\big )\right] \; dx_1\nonumber \\&\quad + \int _0^{z^*} z_2'(x_1)\left[ \pi ^{(1)}\big (x_1,z_2(x_1)\big )-\pi ^{(2)}\big (z_2(x_1),x_1\big )\right] F\big (x_1,z_2(x_1)\big )\; dx_1 \nonumber \\&\quad +\int _0^{z^*}\int _{x_2}^{z_2({x_2})} \pi ^{(1,2)}({x_1},{x_2}) \left[ F(x_1,x_2)+F(x_2,x_1)\right] dx_1 dx_2 \nonumber \\&\quad +\int _0^{z^*}\int _{x_1}^{z_2({x_1})} \left[ \pi ^{(1,2)}({x_1},{x_2})-\pi ^{(1,2)}({x_2},{x_1}) \right] F(x_1,x_2) dx_2 dx_1, \end{aligned}$$
(69)

with, by assumption, \(\pi ^{(1)}\big (x_1,z_2(x_1)\big )-\pi ^{(2)}\big (z_2(x_1),x_1\big )\le 0\) and \(\pi ^{(1,2)}({x_1},{x_2})-\pi ^{(1,2)}({x_2},{x_1})\ge 0\). The second and fourth terms of the right-hand side of (69) account for the first condition of Proposition 3, while the first and third terms account for its second condition.

Appendix 2: proof of propositions from Sect. 3

Let the lowest value of mean income on the mean/variability poverty frontier be obtained for \(\tau _\eta =0\) at \(\mu =z^*\), so that \(\tilde{\lambda }(z^*,0) = \lambda (z^*,z^*)=0\). At this point, it is also necessary to differentiate between the cases of \(x_1<x_2\) and \(x_1>x_2\). Let \(\tau _\eta ^{z1}(\mu )\,(\tau _\eta ^{z2}(\mu ))\) be the value of \(\tau _\eta \) such that \(\tilde{\lambda }\big (\mu ,\tau _\eta ^z(\mu )\big )=0\) when \(x_1<x_2\) (\(x_1>x_2\)). Since individuals are supposed to be poor \(\forall \tau ^\eta \) if \(\mu \le z^*,\, \tau _\eta ^{z1}(\mu )\) and \(\tau _\eta ^{z2}(\mu )\) are defined on the intervals \([z^*,+\infty )\). Due to the monotonicity assumptions, \(\frac{\partial \tau _\eta ^{z1}}{\partial \mu }\le 0\) and \(\frac{\partial \tau _\eta ^{z2}}{\partial \mu }\le 0\).

Let \(q:=\text {prob}(x_1<x_2)\) and \(\rho _1\,(\rho _2)\) be the individual poverty measure to be applied when \(x_1<x_2\,(x_1>x_2)\). Let \(f_1\,(f_2)\) denote the joint density function of \(\mu \) and \(\tau _\eta \), conditional on \(x_1<x_2\,(x_1>x_2)\). The same notation applies for the cdf, conditional cdf and marginal cdf and marginal density functions. With the above, lifetime poverty defined in (19) can alternatively be defined as:

$$\begin{aligned} \tilde{P}(\tilde{\lambda } )&= q\int _0^{z^*}\int _{-\mu ^{1-\eta }}^0 \rho _1(\mu ,\tau _\eta ,\tilde{\lambda }) f_1(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&\quad + q\int _{z^*}^{+\infty }\int _{-\mu ^{1-\eta }}^{\tau _\eta ^{z1}(\mu )} \rho _1(\mu ,\tau _\eta ,\tilde{\lambda }) f_1(\mu ,\tau _\eta )\; d\tau _\eta d\mu \\&\quad + (1-q)\int _0^{z^*}\int _{-\mu ^{1-\eta }}^0 \rho _2(\mu ,\tau _\eta ,\tilde{\lambda }) f_2(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&\quad + (1-q)\int _{z^*}^{+\infty }\int _{-\mu ^{1-\eta }}^{\tau _\eta ^{z2}(\mu )} \rho _2(\mu ,\tau _\eta ,\tilde{\lambda }) f_2(\mu ,\tau _\eta )\; d\tau _\eta d\mu . \nonumber \end{aligned}$$
(70)

For convenience, \(\tilde{\lambda }\) is dropped from the expression of \(\rho \). We first consider the first and third elements of the right-hand term of (70) and, integrating by parts, find \(\forall j=1,2\):

$$\begin{aligned}&\int _0^{z^*}\int _{-\mu ^{1-\eta }}^0 \rho _j(\mu ,\tau _\eta ) f_j(\mu ,\tau _\eta ) d\tau _\eta d\mu \nonumber \\&= \int _0^{z^*} \bigl [\rho _j(\mu ,\tau _\eta )F_j(\tau _\eta |\mu )\bigr ]_{\tau _\eta =-\mu ^{1-\eta }}^{\tau _\eta =0} f_j(\mu )\; d\mu \nonumber \\&-\int _0^{z^*} \int _{-\mu ^{1-\eta }}^0 \rho _j^{(2)}(\mu ,\tau _\eta )F_j(\tau _\eta |\mu ) f_j(\mu )\; d\tau _\eta d\mu . \end{aligned}$$
(71)

As \(F_j(\tau _\eta =-\mu ^{1-\eta }|\mu )=0\) and \(F_j(\tau _\eta =0|\mu )=1\), the first element on the right-hand side of (71) can be expressed as:

$$\begin{aligned}&\int _0^{z^*}\bigl [\rho _j(\mu ,\tau _\eta )F_j(\tau _\eta |\mu ) \bigr ]_{\tau _\eta =-\mu ^{1-\eta }}^{\tau _\eta =0} f_j(\mu )\; d\mu&\nonumber \\&= \int _0^{z^*} \rho _j(\mu ,0)f_j(\mu ) \; d\mu , \nonumber \\&= \left[ \rho _j(\mu ,0)F_j(\mu )\right] _{\mu =0}^{\mu =z^*} - \int _0^{z^*} \rho _j^{(1)}(\mu ,0)F_j(\mu ) \; d\mu \nonumber \\&= - \int _0^{z^*} \rho _j^{(1)}(\mu ,0)F_j(\mu ) \; d\mu , \end{aligned}$$
(72)

since \(F_j(\mu =0) = 0\) and the function \(\rho _j\) is zero at the poverty frontier (\(\rho _j(z^*,0)=0\)).

We now can turn to the second element of the right-hand term of (71). Define \(Q_j(\mu ) = \int _{-\mu ^{1-\eta }}^0 \rho _j^{(2)}(\mu ,\tau _\eta )F_j(\mu ,\tau _\eta )\; d\tau _\eta \). We have:

$$\begin{aligned} \frac{\partial Q_j}{\partial \mu }&= (1-\eta )\mu ^{-\eta }\rho _j^{(2)} \left( \mu ,-\mu ^{1-\eta }\right) F_j\left( \mu ,-\mu ^{1-\eta }\right) \nonumber \\&\quad + \int _{-\mu ^{1-\eta }}^0\rho _j^{(1,2)}(\mu ,\tau _\eta )F_j(\mu ,\tau _\eta )\; d\tau _\eta \nonumber \\&\quad + \int _{-\mu ^{1-\eta }}^0 \rho _j^{(2)}(\mu ,\tau _\eta )F_j(\tau _\eta |\mu ) f_j(\mu )\; d\tau _\eta \nonumber \\&= \int _{-\mu ^{1-\eta }}^0\rho _j^{(1,2)}(\mu ,\tau _\eta )F_j(\mu ,\tau _\eta )\; d\tau _\eta \nonumber \\&\quad + \int _{-\mu ^{1-\eta }}^0 \rho _j^{(2)}(\mu ,\tau _\eta )F_j(\tau _\eta |\mu ) f_j(\mu )\;d\tau _\eta , \end{aligned}$$
(73)

since \(F_j(\mu ,-\mu ^{1-\eta })=0\). Integrating that expression along \(\mu \) and over \([0,z^*]\) and rearranging, we have:

$$\begin{aligned}&\int _0^{z^*} \int _{-\mu ^{1-\eta }}^0 \rho _j^{(2)}(\mu ,\tau _\eta )F_j(\tau _\eta |\mu ) f_j(\mu )\; d\tau _\eta d\mu \nonumber \\&\quad = \left[ Q_j(\mu )\right] _0^{z^*} - \int _0^{z^*} \int _{-\mu ^{1-\eta }}^0 \rho _j^{(1,2)}(\mu ,\tau _\eta )F_j(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&\quad = \int _{{-z^*}^{1-\eta }}^0 \rho _j^{(2)}(z^*,\tau _\eta )F_j(z^*,\tau _\eta )\; d\tau _\eta \nonumber \\&\quad - \int _0^{z^*} \int _{-\mu ^{1-\eta }}^0 \rho _j^{(1,2)}(\mu ,\tau _\eta )F_j(\mu ,\tau _\eta )\; d\tau _\eta d\mu . \end{aligned}$$
(74)

We then consider the second and fourth elements on the right-hand side of (70) and, using once again integration by parts, find:

$$\begin{aligned}&\int _{z^*}^{+\infty }\int _{-\mu ^{1-\eta }}^{\tau _\eta ^{zj}(\mu )} \rho _j(\mu ,\tau _\eta ) f_j(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&\quad = \int _{z^*}^{+\infty } \left[ \rho _j(\mu ,\tau _\eta )F_j(\tau _\eta |\mu ) \right] _{\tau _\eta =-\mu ^{1-\eta }}^{\tau _\eta =\tau _\eta ^{zj}(\mu )} f_j(\mu )\; d\mu \nonumber \\&\quad \quad - \int _{z^*}^{+\infty }\int _{-\mu ^{1-\eta }}^{\tau _\eta ^{zj}(\mu )} \rho _j^{(2)}(\mu ,\tau _\eta ) F_j(\tau _\eta |\mu )f_j(\mu )\; d\tau _\eta d\mu \nonumber \\&\quad =- \int _{z^*}^{+\infty }\int _{-\mu ^{1-\eta }}^{\tau _\eta ^{zj}(\mu )} \rho _j^{(2)}(\mu ,\tau _\eta ) F_j(\tau _\eta |\mu )f_j(\mu )\; d\tau _\eta d\mu , \end{aligned}$$
(75)

as \(\rho _j\big (\mu ,\tau _\eta ^{zj}(\mu )\big )=0\) and \(F_j(\tau _\eta =-\mu ^{1-\eta }|\mu )=0\).

Let \(R_j(\mu ) = \int _{-\mu ^{1-\eta }}^{\tau _\eta ^{zj}(\mu )} \rho _j^{(2)}(\mu ,\tau _\eta )F_j(\mu ,\tau _\eta )\; d\tau _\eta \). We have:

$$\begin{aligned} \frac{\partial R_j}{\partial \mu }&= {\tau _\eta ^{zj}}'(\mu )\rho _j^{(2)} \big (\mu ,\tau _\eta ^{zj}(\mu )\big )F_j(\mu ,\tau _\eta ^{zj}(\mu )\big )\nonumber \\&\quad +(1-\eta )\mu ^{-\eta }\rho _j^{(2)}(\mu ,-\mu ^{1-\eta })F_j(\mu ,-\mu ^{1-\eta })\nonumber \\&\quad + \int _{-\mu ^{1-\eta }}^{\tau _\eta ^{zj}(\mu )} \rho _j^{(1,2)}(\mu ,\tau _\eta )F_j(\mu ,\tau _\eta )\; d\tau _\eta + \int _{-\mu ^{1-\eta }}^{\tau _\eta ^{zj}(\mu )} \rho _j^{(2)}(\mu ,\tau _\eta ) F_j(\tau _\eta |\mu ) f_j(\mu )\; d\tau _\eta , \nonumber \\&= {\tau _\eta ^{zj}}'(\mu )\rho _j^{(2)}\big (\mu ,\tau _\eta ^{zj}(\mu ) \big )F_j(\mu ,\tau _\eta ^{zj}(\mu )\big ) \nonumber \\&\quad \!+\! \int _{-\mu ^{1-\eta }}^{\tau _\eta ^{zj}(\mu )} \rho _j^{(1,2)}(\mu ,\tau _\eta )F_j(\mu ,\tau _\eta )\; d\tau _\eta \!+\! \int _{-\mu ^{1-\eta }}^{\tau _\eta ^{zj}(\mu )} \rho _j^{(2)}(\mu ,\tau _\eta )F_j(\tau _\eta |\mu ) f_j(\mu )\; d\tau _\eta . \end{aligned}$$
(76)

Integrating that expression along \(\mu \) and over \([z^*,+\infty ]\) and rearranging, we have:

$$\begin{aligned}&\int _{z^*}^{+\infty } \int _{-\mu ^{1-\eta }}^{\tau _\eta ^{zj}(\mu )} \rho _j^{(2)}(\mu ,\tau _\eta )F_j(\tau _\eta |\mu ) f_j(\mu )\; d\tau _\eta d\mu \nonumber \\&= \left[ R_j(\mu )\right] _{z^*}^{+\infty } - \int _{z^*}^{+\infty } {\tau _\eta ^{zj}}'(\mu )\rho _j^{(2)}\big (\mu ,\tau _\eta ^{zj}(\mu )\big ) F_j(\mu ,\tau _\eta ^{zj}(\mu )\big )\; d\mu \nonumber \\&\quad - \int _{z^*}^{+\infty } \int _{-\mu ^{1-\eta }}^{\tau _\eta ^{zj}(\mu )} \rho _j^{(1,2)}(\mu ,\tau _\eta )F_j(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&= \int _{-\infty ^{1-\eta }}^{\tau _\eta ^{zj}(+\infty )} \rho _j^{(2)}(+\infty ,\tau _\eta )F_j(+\infty ,\tau _\eta )\; d\tau _\eta - \int _{-{z^*}^{1-\eta }}^{0} \rho _j^{(2)}(z^*,\tau _\eta )F_j(z^*,\tau _\eta )\; d\tau _\eta \nonumber \\&\quad - \int _{z^*}^{+\infty }{\tau _\eta ^{zj}}'(\mu )\rho _j^{(2)}\big (\mu , \tau _\eta ^{zj}(\mu )\big )F_j(\mu ,\tau _\eta ^{zj}(\mu )\big )\; d\mu \nonumber \\&\quad - \int _{z^*}^{+\infty } \int _{-\mu ^{1-\eta }}^{\tau _\eta ^{zj}(\mu )} \rho _j^{(1,2)}(\mu ,\tau _\eta )F_j(\mu ,\tau _\eta )\; d\tau _\eta d\mu . \end{aligned}$$
(77)

Using (72), (74), (77), and \(\rho _1(\mu ,0)=\rho _2(\mu ,0)\, \forall \mu \) , we finally obtain the following expression for \(P(\lambda )\):

$$\begin{aligned} \tilde{P}(\tilde{\lambda })&= - \int _0^{z^*} \rho _2^{(1)}(\mu ,0)F(\mu ) \; d\mu - q \int _{-\infty ^{1-\eta }}^{\tau _\eta ^{z1}(+\infty )} \rho _1^{(2)}(+\infty ,\tau _\eta )F_1(+\infty ,\tau _\eta )\; d\tau _\eta \\&\quad + q\int _{z^*}^{+\infty }{\tau _\eta ^{z1}}'(\mu )\rho _1^{(2)}\big (\mu , \tau _\eta ^{z1}(\mu )\big )F_1(\mu ,\tau _\eta ^{z1}(\mu )\big )\; d\mu \nonumber \\&\quad + q\int _0^{z^*} \int _{-\mu ^{1-\eta }}^0 \rho _1^{(1,2)}(\mu ,\tau _\eta )F_1(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&\quad + q\int _{z^*}^{+\infty } \int _{-\mu ^{1-\eta }}^{\tau _\eta ^{z1}(\mu )} \rho _1^{(1,2)}(\mu ,\tau _\eta )F_1(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&\quad - (1- q)\int _{-\infty ^{1-\eta }}^{\tau _\eta ^{z2}(+\infty )} \rho _2^{(2)}(+\infty ,\tau _\eta )F_2(+\infty ,\tau _\eta )\; d\tau _\eta \nonumber \\&\quad + (1- q)\int _{z^*}^{+\infty }{\tau _\eta ^{z2}}'(\mu )\rho _2^{(2)} \big (\mu ,\tau _\eta ^{z2}(\mu )\big )F_2(\mu ,\tau _\eta ^{z2}(\mu )\big )\; d\mu \nonumber \\&\quad + (1- q)\int _0^{z^*} \int _{-\mu ^{1-\eta }}^0 \rho _2^{(1,2)}(\mu ,\tau _\eta )F_2(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&\quad + (1-q)\int _{z^*}^{+\infty } \int _{-\mu ^{1-\eta }}^{\tau _\eta ^{z2}(\mu )} \rho _2^{(1,2)}(\mu ,\tau _\eta )F_2(\mu ,\tau _\eta )\; d\tau _\eta d\mu . \nonumber \end{aligned}$$
(78)

Proposition 4 then follows directly from  (78) by inspection.

1.1 Proof of Proposition 6

Letting \(\rho _1(\mu ,\tau _\eta ) = \rho _2(\mu ,\tau _\eta )\) \(\forall (\mu ,\tau _\eta )\in \varGamma _S(\tilde{\lambda })\), it follows that \(\forall (\mu ,\tau _\eta )\in \varGamma _S(\tilde{\lambda })\):

$$\begin{aligned} \rho _1^{(2)}(\mu ,\tau _\eta )&= \rho _2^{(2)}(\mu ,\tau _\eta ), \end{aligned}$$
(79)
$$\begin{aligned} \rho _1^{(1,2)}(\mu ,\tau _\eta )&= \rho _2^{(1,2)}(\mu ,\tau _\eta ). \end{aligned}$$
(80)

Moreover, \(\tau _\eta ^{z1}(\mu )=\tau _\eta ^{z2}(\mu )\), so that \({\tau _\eta ^{z1}}'(\mu )={\tau _\eta ^{z2}}'(\mu )\). Equation (78) can then be rewritten as:

$$\begin{aligned} \tilde{P}(\tilde{\lambda })&= - \int _0^{z^*} \rho _1^{(1)}(\mu ,0)F(\mu ) \; d\mu - \int _{-\infty ^{1-\eta }}^{\tau _\eta ^{z1}(+\infty )} \rho _1^{(2)}(+\infty ,\tau _\eta )F(+\infty ,\tau _\eta )\; d\tau _\eta \nonumber \\&\quad + \int _{z^*}^{+\infty }{\tau _\eta ^{z1}}'(\mu )\rho _1^{(2)} \big (\mu ,\tau _\eta ^{z1}(\mu )\big )F(\mu ,\tau _\eta ^{z1}(\mu )\big )\; d\mu \nonumber \\&\quad + \int _0^{z^*} \int _{-\mu ^{1-\eta }}^0 \rho _1^{(1,2)}(\mu ,\tau _\eta )F(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&\quad + \int _{z^*}^{+\infty } \int _{-\mu ^{1-\eta }}^{\tau _\eta ^z(\mu )} \rho _1^{(1,2)}(\mu ,\tau _\eta )F(\mu ,\tau _\eta )\; d\tau _\eta d\mu . \end{aligned}$$
(81)

The rest of the proof follows by inspection.

1.2 Proof of Proposition 7

With asymmetry, it is assumed that \(\tau _\eta ^{z1}(\mu ) \ge \tau _\eta ^{z2}(\mu )\) for all \(\mu \in [z^*,+\infty )\). As a consequence, Eq. (46) can be rewritten as:

$$\begin{aligned} \tilde{P}(\tilde{\lambda } )&= q\int _0^{z^*}\int _{-\mu ^{1-\eta }}^0 \rho _1(\mu ,\tau _\eta ,\tilde{\lambda }) f_1(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&\quad + q\int _{z^*}^{+\infty }\int _{-\mu ^{1-\eta }}^{\tau _\eta ^{z1}(\mu )} \rho _1(\mu ,\tau _\eta ,\tilde{\lambda }) f_1(\mu ,\tau _\eta )\; d\tau _\eta d\mu \\&\quad + (1-q)\int _0^{z^*}\int _{-\mu ^{1-\eta }}^0 \rho _2(\mu ,\tau _\eta ,\tilde{\lambda }) f_2(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&\quad + (1-q)\int _{z^*}^{+\infty }\int _{-\mu ^{1-\eta }}^{\tau _\eta ^{z1}(\mu )} \rho _2(\mu ,\tau _\eta ,\tilde{\lambda }) f_2(\mu ,\tau _\eta )\; d\tau _\eta d\mu . \nonumber \end{aligned}$$
(82)

Noting that \(\rho _1^{(2)}(\mu ,\tau _\eta )-\rho _2^{(2)}(\mu ,\tau _\eta ) \le 0\) and \(\rho _1^{(1,2)}(\mu ,\tau _\eta )-\rho _2^{(1,2)}(\mu ,\tau _\eta )\ge 0\), we obtain:

$$\begin{aligned} \tilde{P}(\tilde{\lambda })&= - \int _0^{z^*} \rho _2^{(1)}(\mu ,0)F(\mu ) \; d\mu - \int _{-\infty ^{1-\eta }}^{\tau _\eta ^{z1}(+\infty )} \rho _2^{(2)}(+\infty ,\tau _\eta )F(+\infty ,\tau _\eta )\; d\tau _\eta \\&\quad - q\int _{-\infty ^{1-\eta }}^{\tau _\eta ^{z1}(+\infty )} \left( \rho _1^{(2)}(+\infty ,\tau _\eta )-\rho _2^{(2)}(+\infty ,\tau _\eta ) \right) F_1(+\infty ,\tau _\eta )\; d\tau _\eta \nonumber \\&\quad + \int _{z^*}^{+\infty }{\tau _\eta ^{z1}}'(\mu )\rho _2^{(2)}\big (\mu , \tau _\eta ^{z1}(\mu )\big )F(\mu ,\tau _\eta ^{z1}(\mu )\big )\; d\mu \nonumber \\&\quad + q\int _{z^*}^{+\infty }{\tau _\eta ^{z1}}'(\mu )\left( \rho _1^{(2)} \big (\mu ,\tau _\eta ^{z1}(\mu )\big )-\rho _2^{(2)}\big (\mu ,\tau _\eta ^{z1}(\mu ) \big )\right) F_1(\mu ,\tau _\eta ^{z1}(\mu )\big )\; d\mu \nonumber \\&\quad + \int _0^{z^*} \int _{-\mu ^{1-\eta }}^0 \rho _2^{(1,2)}(\mu ,\tau _\eta )F(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&\quad + \int _0^{z^*} \int _{-\mu ^{1-\eta }}^0 \left( \rho _1^{(1,2)}(\mu ,\tau _\eta ) -\rho _2^{(1,2)}(\mu ,\tau _\eta )\right) F_1(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&\quad + \int _{z^*}^{+\infty } \int _{-\mu ^{1-\eta }}^{\tau _\eta ^{z1}(\mu )} \rho _2^{(1,2)}(\mu ,\tau _\eta )F(\mu ,\tau _\eta )\; d\tau _\eta d\mu \nonumber \\&\quad + q\int _{z^*}^{+\infty } \int _{-\mu ^{1-\eta }}^{\tau _\eta ^{z1}(\mu )} \left( \rho _1^{(1,2)}(\mu ,\tau _\eta )-\rho _2^{(1,2)}(\mu ,\tau _\eta )\right) F_1(\mu , \tau _\eta )\; d\tau _\eta d\mu . \nonumber \end{aligned}$$
(83)

The rest of the proof follows by inspection.

Appendix 3: intersection of the different classes of poverty measures

1.1 The derivations of additional restrictions on the individual poverty measure \(\pi \) and \(\rho \)

We first consider the conditions that \(\rho \) must obey so that members of \(\ddot{\varPi }(\lambda ^+)\) are also members of \(\tilde{\varPi }(\tilde{\lambda }^+)\). First, we have \(\pi ^{(x_i)}(x_1,x_2)\le 0\),\(\forall i=1,2\), so that we should also observe \(\rho _t^{(x_i)}(\mu ,\tau _\eta )\le 0\) \(\forall t\). When \(x_i\) is not the lowest income, an income increment increases variability (\(|\tau _\eta |\) rises) while increasing mean income, so that the net effect of this is a priori not known. Assuming \(x_1\) to be the lowest income, if that net effect is supposed to correspond to a decrease in the level of poverty, we should have:

$$\begin{aligned}&\rho _1^{(x_2)}(\mu ,\tau _\eta ) = \rho _1^{(1)}(\mu ,\tau _\eta )\mu ^{(x_2)} + \rho _1^{(2)}(\mu ,\tau _\eta )\tau ^{(x_2)}_\eta \le 0 \end{aligned}$$
(84)
$$\begin{aligned}&\Rightarrow \frac{1}{2}\rho _1^{(1)}(\mu ,\tau _\eta ) +\frac{1}{2}\mu ^{-\eta -1}\left( \frac{\eta }{2}(x_2-x_1) -\mu \right) \rho _1^{(2)}(\mu ,\tau _\eta ) \le 0 \end{aligned}$$
(85)
$$\begin{aligned}&\Rightarrow \frac{1}{2}\rho _1^{(1)}(\mu ,\tau _\eta ) - \frac{1}{2}\left( \mu ^{-\eta }+\frac{\eta \tau _\eta }{\mu }\right) \rho _1^{(2)}(\mu ,\tau _\eta ) \le 0 \end{aligned}$$
(86)
$$\begin{aligned}&\Rightarrow \rho _1^{(1)}(\mu ,\tau _\eta ) \le \left( \mu ^{-\eta }+\frac{\eta \tau _\eta }{\mu }\right) \rho _1^{(2)}(\mu ,\tau _\eta ). \end{aligned}$$
(87)

In the same manner, it would also be necessary to observe \(\rho ^{(x_1,x_2)}(\mu ,\tau _\eta )\ge 0\). Still supposing \(x_1\) to be the lower income, we have:

$$\begin{aligned} \rho _1^{(x_1,x_2)}(\mu ,\tau _\eta )&= \frac{1}{4}\rho _1^{(1,1)}(\mu ,\tau _\eta ) +\frac{1}{4}\mu ^{-\eta -1}\left( \frac{\eta }{2}(x_2-x_1)+\mu \right) \rho _1^{(1,2)}(\mu ,\tau _\eta ) \nonumber \\&\quad - \frac{\eta (\eta +1)}{2}2^{\eta -1}(x_1+x_2)^{-\eta -2}(x_2-x_1)\rho _1^{(2)}(\mu ,\tau _\eta ) \nonumber \\&\quad +\frac{1}{2}\mu ^{-\eta -1}\left( \frac{\eta }{2}(x_2-x_1)-\mu \right) \left( \frac{1}{2}\rho _1^{(1,2)}(\mu ,\tau _\eta )\right. \nonumber \\&\qquad \left. +\frac{1}{2}\mu ^{-\eta -1}\left( \frac{\eta }{2}(x_2-x_1)+\mu \right) \rho _1^{(2,2)}(\mu ,\tau _\eta )\right) \end{aligned}$$
(88)
$$\begin{aligned}&=\frac{1}{4}\rho _1^{(1,1)}(\mu ,\tau _\eta ) +\frac{\eta }{4}\mu ^{-\eta -1}(x_2-x_1)\rho _1^{(1,2)}(\mu ,\tau _\eta ) \nonumber \\&\quad - \frac{\eta (\eta +1)}{2}2^{\eta -1}(x_1+x_2)^{-\eta -2}(x_2-x_1)\rho _1^{(2)}(\mu ,\tau _\eta ) \nonumber \\&\quad +\frac{1}{4}\mu ^{-2(\eta +1)}\left( \frac{\eta ^2}{4}(x_2-x_1)^2-\mu ^2\right) \rho _1^{(2,2)}(\mu ,\tau _\eta ) \end{aligned}$$
(89)
$$\begin{aligned}&=\frac{1}{4}\rho _1^{(1,1)}(\mu ,\tau _\eta ) - \frac{1}{2}\frac{\eta \tau _\eta }{\mu }\rho _1^{(1,2)}(\mu ,\tau _\eta ) - \frac{\eta (\eta +1)\tau _\eta }{8\mu ^2}\rho _1^{(2)}(\mu ,\tau _\eta ) \nonumber \\&\quad + \frac{1}{4}\left( \left( \frac{\eta \tau _\eta }{\mu }\right) ^2-\mu ^{-2\eta }\right) \rho _1^{(2,2)}(\mu ,\tau _\eta ). \end{aligned}$$
(90)

Considering the case of absolute variability aversion (\(\eta =0\)), \(\rho _t\) must exhibit the following two properties:

$$\begin{aligned} {\left\{ \begin{array}{ll} \rho _t^{(1)}(\mu ,\tau _0) \le \rho _t^{(2)}(\mu ,\tau _0), \\ \rho _t^{(1,1)}(\mu ,\tau _0) \ge \rho _t^{(2,2)}(\mu ,\tau _0). \end{array}\right. } \end{aligned}$$
(91)

With relative variability aversion (\(\eta =1\)), the conditions become:

$$\begin{aligned} {\left\{ \begin{array}{ll} \rho _t^{(1)}(\mu ,\tau _1) \le \frac{1+\tau _1}{\mu }\rho _t^{(2)}(\mu ,\tau _1), \\ \rho _t^{(1,1)}(\mu ,\tau _1) \ge \frac{2\tau _1}{\mu }\rho _t^{(1,2)}(\mu ,\tau _1) + \frac{\tau _1}{\mu ^2}\rho _t^{(2)}(\mu ,\tau _1) + \frac{1-\tau _1^2}{\mu ^2}\rho _t^{(2,2)}(\mu ,\tau _1). \end{array}\right. } \end{aligned}$$
(92)

It can also be shown that \(x_1=\mu +\tau _\eta \mu ^\eta \) and \(x_2=\mu -\tau _\eta \mu ^\eta \) if \(x_1<x_2\). It is then possible to compute \(\pi ^{(\mu )},\, \pi ^{(\tau _\eta )}\) and \(\pi ^{(\mu ,\tau _\eta )}\) to see what conditions have to be met so that \(\pi \) respects the conditions imposed on \(\rho \). First, considering the derivatives of \(\pi \) with respect to mean income, we should observe:

$$\begin{aligned} \pi ^{(\mu )}(x_1,x_2)= \pi ^{(1)}(x_1,x_2)x_1^{(\mu )} + \pi ^{(2)}(x_1,x_2)x_2^{(\mu )}&\le 0 \end{aligned}$$
(93)
$$\begin{aligned} \Rightarrow (1+\eta \tau _\eta \mu ^{\eta -1})\pi ^{(1)}(x_1,x_2) + (1-\eta \tau _\eta \mu ^{\eta -1})\pi ^{(2)}(x_1,x_2)&\le 0. \end{aligned}$$
(94)

That condition is always fulfilled since \(1+\eta \tau _\eta \mu ^{\eta -1}\) and \(1-\eta \tau _\eta \mu ^{\eta -1}\) are positive for \(\eta \in [0,1]\), and \(\pi ^{(1)}(x_1,x_2)\) and \(\pi ^{(2)}(x_1,x_2)\) are also non-negative. The result is intuitive. Increasing the mean without altering variability implies increasing income at both periods, so that poverty should logically fall.

Considering now a decrease in variability without a change in mean income, things are less clear since such a change raises the lower income but decreases the higher one. It is then necessary to consider the net sum of those opposite effects. Since \(\rho _t^{(2)}(\mu ,\tau _\eta )\le 0\), we should obtain:

$$\begin{aligned}&\pi ^{(\tau _\eta )}(x_1,x_2) = \mu ^\eta \pi ^{(1)}(x_1,x_2) - \mu ^\eta \pi ^{(2)}(x_1,x_2) \le 0 \end{aligned}$$
(95)
$$\begin{aligned}&\Rightarrow \pi ^{(1)}(x_1,x_2) \le \pi ^{(2)}(x_1,x_2). \end{aligned}$$
(96)

Finally, \(\pi \) has to be defined so as to respect \(\pi ^{(\mu ,\tau _\eta )}(x_1,x_2)\ge 0\). We have:

$$\begin{aligned}&\pi ^{(\mu ,\tau _\eta )}(x_1,x_2)\nonumber \\&\quad = \eta \mu ^{\eta -1}\pi ^{(1)}(x_1,x_2) + \big (1+\eta \tau _\eta \mu ^{\eta -1}\big )\left( \mu ^\eta \pi ^{(1,1)}(x_1,x_2) -\mu ^\eta \pi ^{(1,2)}(x_1,x_2)\right) \nonumber \\&\quad \quad -\eta \mu ^{\eta -1}\pi ^{(2)}(x_1,x_2) + \big (1-\eta \tau _\eta \mu ^{\eta -1}\big ) \left( \mu ^\eta \pi ^{(1,2)}(x_1,x_2)-\mu ^\eta \pi ^{(2,2)}(x_1,x_2)\right) \end{aligned}$$
(97)
$$\begin{aligned}&\quad = \eta \mu ^{\eta -1}\left( \pi ^{(1)}(x_1,x_2)-\pi ^{(2)}(x_1,x_2)\right) \nonumber \\&\qquad + \mu ^\eta \big (1+\eta \tau _\eta \mu ^{\eta -1}\big )\left( \pi ^{(1,1)}(x_1,x_2) -\pi ^{(1,2)}(x_1,x_2)\right) \nonumber \\&\quad \quad +\mu ^\eta \big (1-\eta \tau _\eta \mu ^{\eta -1}\big )\left( \pi ^{(1,2)}(x_1,x_2) -\pi ^{(2,2)}(x_1,x_2)\right) . \end{aligned}$$
(98)

With absolute variability aversion (\(\eta =0\)), \(\pi \) should be such that:

$$\begin{aligned} {\left\{ \begin{array}{ll} \pi ^{(1)}(x_1,x_2) \le \pi ^{(2)}(x_1,x_2), \\ \pi ^{(1,1)}(x_1,x_2) \ge \pi ^{(2,2)}(x_1,x_2). \end{array}\right. } \end{aligned}$$
(99)

With relative variability aversion (\(\eta =1\)), we obtain, for \(x_1<x_2\):

$$\begin{aligned} {\left\{ \begin{array}{ll} \pi ^{(1)}(x_1,x_2) \le \pi ^{(2)}(x_1,x_2), \\ \pi ^{(1)}(x_1,x_2)-\pi ^{(2)}(x_1,x_2) + \mu (1+\tau _1)\left( \pi ^{(1,1)}(x_1,x_2)-\pi ^{(1,2)}(x_1,x_2)\right) \\ +\mu (1-\tau _1)\left( \pi ^{(1,2)}(x_1,x_2)-\pi ^{(2,2)}(x_1,x_2)\right) \ge 0. \end{array}\right. } \end{aligned}$$
(100)

1.2 Proof of Proposition 8 and Corollary 1

We have shown that it is possible to impose restrictions on the derivatives of both \(\pi (x_1,x_2)\) and \(\rho (\mu ,\tau _\eta )\) to obtain measures that are included in both \(\tilde{\varPi }(\tilde{\lambda }^+)\) and \(\ddot{\varPi }(\lambda ^+)\). Since the class of poverty measures \(\breve{\varPi }_\eta (\tilde{\lambda }^+)\) is not empty, any measure \(P(\tilde{\lambda })\in \breve{\varPi }_\eta (\tilde{\lambda }^+)\) can equally be expressed using equation (8) or equation (19). Consequently, both  (59) and (78) are valid expressions for \(P(\tilde{\lambda })\). For Proposition 8 not to hold, it would be necessary to show that one can find two distributions \(A\) and \(B\) such that \(A\; \ddot{\succcurlyeq }_{\tilde{\lambda }^+} \;B\) and \(B\tilde{\succcurlyeq }_{\eta ,\tilde{\lambda }^+}\; A\). However, with the restrictions imposed on the classes \(\ddot{\varPi }(\lambda ^+)\) and \(\tilde{\varPi }(\tilde{\lambda }^+)\), such a situation would imply that for any poverty measure in \(\breve{\varPi }_\eta (\tilde{\lambda }^+)\), the difference \(P_A(\tilde{\lambda }) - P_B(\tilde{\lambda })\) should simultaneously be non-negative and non-positive. This will happen if and only if \(P^{1,1}_A(x_1,x_2) = P^{1,1}_B(x_1,x_2),\, \forall (x_1,x_2)\in \varGamma (\tilde{\lambda })\). This proves Proposition 8.

The demonstration of Corollary 1 is straightforward. As long as the class of poverty measures \(\breve{\varPi }_\eta (\tilde{\lambda }^+)\) is not empty, observing dominance with respect to either \(\ddot{\varPi }(\lambda ^+)\) or \(\tilde{\varPi }(\tilde{\lambda }^+)\) precludes observing an opposite strong dominance relationship with the other class of poverty measures, as both classes include \(\breve{\varPi }_\eta (\tilde{\lambda }^+)\).

Appendix 4: additional tables

See Tables 1, 2, 3.

Table 1 First-order dominance tests for intertemporal poverty indices (using income-defined indices)
Table 2 Second-order dominance tests for intertemporal poverty indices (using income-defined indices)
Table 3 First-order dominance tests with perfect intertemporal income pooling

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bresson, F., Duclos, JY. Intertemporal poverty comparisons. Soc Choice Welf 44, 567–616 (2015). https://doi.org/10.1007/s00355-014-0855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00355-014-0855-2

Navigation