Skip to main content
Log in

Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of quantum theory to define the probability of equality between two arbitrary observables in an arbitrary state. We apply this new interpretation to quantum measurement theory, and establish a logical basis for the difference between simultaneous measurability and simultaneous determinateness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell, J. L., Boolean-valued models and independence proofs in set theory, 2nd ed., Oxford UP, Oxford, 1985.

  2. Birkhoff, G. and von Neumann, J., The logic of quantum mechanics, Ann. Math. 37, pp. 823–843, 1936.

  3. Bruns G. and Kalmbach, G., “Some remarks on free orthomodular lattices,” Proc. Lattice Theory Conf., Houston, U.S.A., (Schmidt, J. ed.), pp. 397–408, 1973.

  4. Chevalier G.: “Commutators and decompositions of orthomodular lattices,”. Order 6, 181–194 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen P. J.: “The independence of the continuum hypothesis I,”. Proc. Nat. Acad. Sci. U.S.A. 50, 1143–1148 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, P. J., Set theory and the continuum hypothesis, Benjamin, New York, 1966.

  7. Davies, E. B., Quantum theory of open systems, Academic, London, 1976.

  8. Gibbins, P., Particles and paradoxes: The limits of quantum logic, Cambridge UP, Cambridge, UK, 1987.

  9. Halmos, P. R., Introduction to Hilbert space and the theory of spectral multiplicity, Chelsea, New York, 1951.

  10. Halvorson H., Clifton R.: “Maximal beable subalgebras of quantum mechanical observables,”. Int. J. Theor. Phys. 38, 2441–2484 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Holland, Jr., S. S., “Orthomodularity in infinite dimensions; A theorem of M. Solèr,” Bull. Amer. Math. Soc. 32, pp. 205–234, 1995.

  12. Kalmbach, G., Orthomodular lattices, Academic, London, 1983.

  13. Kochen S., Specker E. P.: “The problem of hidden variables in quantum mechanics,”. J. Math. Mech. 17, 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  14. Marsden E. L.: “The commutator and solvability in a generalized orthomodular lattice,”. Pacific J. Math. 33, 357–361 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Okamura, K. and Ozawa, M., “Measurement theory in local quantum physics,” J. Math. Phys. 57, pp. 015209/1–015209/29, 2016.

  16. Ozawa M.: “Boolean valued analysis and type I \({{\rm AW}^*}\)-algebras,”. Proc. Japan Acad. A 59, 368–371 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ozawa M.: “Boolean valued interpretation of Hilbert space theory,”. J. Math. Soc. Japan 35, 609–627 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ozawa M.: “A classification of type I \({{\rm AW}^*}\)-algebras and Boolean valued analysis,”. J. Math. Soc. Japan 36, 589–608 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ozawa M.: “Quantum measuring processes of continuous observables,”. J. Math. Phys. 25, 79–87 (1984)

    Article  MathSciNet  Google Scholar 

  20. Ozawa M.: “Nonuniqueness of the cardinality attached to homogeneous \({{\rm AW}^*}\)-algebras,”. Proc. Amer. Math. Soc. 93, 681–684 (1985)

    MathSciNet  MATH  Google Scholar 

  21. Ozawa M.: “Uncertainty relations for noise and disturbance in generalized quantum measurements,”. Ann. Physics 311, 350–416 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ozawa M.: “Quantum perfect correlations,”. Ann. Physics 321, 744–769 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ozawa M.: “Transfer principle in quantum set theory,”. J. Symbolic Logic 72, 625–648 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ozawa M.: “Quantum reality and measurement: A quantum logical approach,”. Found. Phys. 41, 592–607 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ozawa, M., “Universal uncertainty principle, simultaneous measurability, and weak values,” AIP Conf. Proc. 1363, pp. 53–62, 2011. arXiv:1106.5083 [quant-ph].

  26. Ozawa, M., “Quantum set theory extending the standard probabilistic interpretation of quantum theory (extended abstract),” Electronic Proc. in Theoretical Computer Science (EPTCS) 172, pp. 15–26, 2014. arXiv:1412.8540 [quant-ph].

  27. Pulmannová S.: “Commutators in orthomodular lattices,”. Demonstratio Math. 18, 187–208 (1985)

    MathSciNet  MATH  Google Scholar 

  28. Redhead, M., Incompleteness, nonlocality, and realism: A prolegomenon to the philosophy of quantum mechanics, Oxford UP, Oxford, 1987.

  29. Scott, D. and Solovay, R., “Boolean-valued models for set theory,” unpublished manuscript for Proc. AMS Summer Institute on Set Theory, Los Angeles: Univ. Cal., 1967.

  30. Takeuti, G., Two applications of logic to mathematics, Princeton UP, Princeton, 1978.

  31. Takeuti, G., “Quantum set theory,” Current Issues in Quantum Logic (Beltrametti, E. G. and van Fraassen, B. C., eds.), Plenum, New York, pp. 303–322, 1981.

  32. Takeuti G.: “\({{\rm C}^*}\)-Algebras and Boolean valued analysis,”. Japan. J. Math. 9, 207–245 (1983)

    MathSciNet  MATH  Google Scholar 

  33. Takeuti G.: “Von Neumann algebras and Boolean valued analysis,”. J. Math. Soc. Japan 35, 1–21 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Varadarajan, V. S., Geometry of quantum theory, Springer, New York, 1985.

  35. von Neumann, J., Mathematical foundations of quantum mechanics, Princeton UP, Princeton, NJ, 1955, [Originally published: Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanao Ozawa.

Additional information

An extended abstract of this paper was presented in the 11th International Workshop on Quantum Physics and Logic (QPL 2014), Kyoto University, June 4–6, 2014 and appeared as Ref. 26).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozawa, M. Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory. New Gener. Comput. 34, 125–152 (2016). https://doi.org/10.1007/s00354-016-0205-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-016-0205-2

Keywords

Navigation