Skip to main content
Log in

Density field reconstruction from time-series schlieren images via extended phase-consistent dynamic mode decomposition

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The extended phase-consistent dynamic mode decomposition (DMD) method, which reconstructs density fields from density gradient fields in multiple directions, was developed and applied to schlieren images in the low-density wind tunnel tests. Schlieren images were acquired in the Re = 3000, 10,000, and M = 0.15, 0.50 flows around a triangular airfoil, and the density gradient fields were calculated from the calibration of the optical system. The proposed density field reconstruction method adopts the extended phase-consistent DMD principle for the estimation of the DMD modes of the density field. The density field was reconstructed with good accuracy in a numerical simulation for comparison, and the density fluctuation region caused by vortex shedding around a triangular airfoil was visualized by the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Availability of data and materials

The data and materials of the present are available from the corresponding author on reasonable request.

References

  • Abe Y, Nonomura T, Iizuka N, Fujii K (2014) Geometric interpretations and spatial symmetry property of metrics in the conservative form for high-order finite-difference schemes on moving and deforming grids. J Comput Phys 260:163–203

    MathSciNet  MATH  Google Scholar 

  • Anyoji M, Nose K, Ida S, Numata D, Nagai H, Asai K (2011) Development of a low-density wind tunnel for simulating Martian atmospheric flight. Trans Japan Soc Aeronaut Space Sci Aerospace Technol Japan 9:21–27

    Google Scholar 

  • Anyoji M, Numata D, Nagai H, Asai K (2015) Effects of Mach number and specific heat ratio on low-Reynolds-number airfoil flows. AIAA J 53(6):1640–1654

    Google Scholar 

  • Anyoji M, Numata D, Nagai H, Asai K (2021) Supersonic ejector-driving system under low pressure: a performance evaluation. Trans Japan Soc Aeronaut Space Sci 64(3):156–164

    Google Scholar 

  • Aono H, Nonomura T, Iizuka N, Ohsako T, Inari T, Hashimoto Y, Takaki R, Fujii K (2013) Scalar tuning of a fluid solver using compact scheme for a supercomputer with a distributed memory architecture. CFD Lett 5:143

    Google Scholar 

  • Atcheson B, Heidrich W, Ihrke I (2009) An evaluation of optical flow algorithms for background oriented schlieren imaging. Exp Fluids 46:467–476

    Google Scholar 

  • Balaram B, Canham T, Duncan C, Grip HF, Johnson W, Maki J, Quon A, Stern R, Zhu D (2018) Mars helicopter technology demonstrator. In: 2018 AIAA atmospheric flight mechanics conference, p 0023

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25(1):539–575. https://doi.org/10.1146/annurev.fl.25.010193.002543

    Article  MathSciNet  Google Scholar 

  • Cakir BO, Lavagnoli S, Saracoglu BH, Fureby C (2023) Assessment and application of optical flow in background-oriented schlieren for compressible flows. Exp Fluids 64(1):11

    Google Scholar 

  • Canuto D, Taira K (2015) Two-dimensional compressible viscous flow around a circular cylinder. J Fluid Mech 785:349–371

    MathSciNet  MATH  Google Scholar 

  • Caros L, Buxton O, Shigeta T, Nagata T, Nonomura T, Asai K, Vincent P (2021) The effects of domain span and wind tunnel walls on direct numerical simulation of flow over a triangular airfoil under martian atmospheric conditions. AIAA J 60(7):3961–3972

    Google Scholar 

  • Chakravarthy S (1984) Relaxation methods for unfactored implicit upwind schemes. In: 22nd aerospace sciences meeting, p 165

  • Cummings H, Perez BNP, Koning W, Johnson W, Young L, Haddad F, Romander E, Balaram J, Tzanetos T, Bowman J, et al. (2022) Overview and introduction of the rotor optimization for the advancement of Mars exploration (ROAMX) project. In: Aeromechanics for advanced vertical flight technical meeting, transformative vertical flight

  • Eckart C, Young G (1936) The approximation of one matrix by another of lower rank. Psychometrika 1(3):211–218

    MATH  Google Scholar 

  • Erichson NB, Donovan C (2016) Randomized low-rank dynamic mode decomposition for motion detection. Comput Vis Image Underst 146:40–50

    Google Scholar 

  • Fujii K, Obayashi S (1989) High-resolution upwind scheme for vortical-flow simulations. J Aircr 26(12):1123–1129. https://doi.org/10.2514/3.45890

    Article  Google Scholar 

  • Gaitonde DV, Visbal MR (2000) Pade-plusmn;-type higher-order boundary filters for the Navier–Stokes equations. AIAA J 38(11):2103–2112

    Google Scholar 

  • Garg S, Settles G (1998) Measurements of a supersonic turbulent boundary layer by focusing schlieren deflectometry. Exp Fluids 25(3):254–264

    Google Scholar 

  • Greenberg PS, Klimek RB, Buchele DR (1995) Quantitative rainbow schlieren deflectometry. Appl Opt 34(19):3810–3825

    Google Scholar 

  • Hansen PC (1999) The L-curve and its use in the numerical treatment of inverse problems

  • Hargather MJ, Settles GS (2010) Natural-background-oriented schlieren imaging. Exp Fluids 48:59–68

    Google Scholar 

  • Hargather MJ, Settles GS (2012) A comparison of three quantitative schlieren techniques. Opt Lasers Eng 50(1):8–17

    Google Scholar 

  • Hayasaka K, Tagawa Y, Liu T, Kameda M (2016) Optical-flow-based background-oriented schlieren technique for measuring a laser-induced underwater shock wave. Exp Fluids 57:1–11

    Google Scholar 

  • Herrero AG, Noguchi A, Kusama K, Shigeta T, Nagata T, Nonomura T, Asai K (2021) Effects of compressibility and Reynolds number on the aerodynamics of a simplified corrugated airfoil. Exp Fluids 62(4):1–20

    Google Scholar 

  • Hidaka H, Okamoto M (2014) An experimental study of triangular airfoils for mars airplane. Trans Japan Soc Aeronaut Space Sci Aerosp Technol Japan 12(ists29):Pk_21–Pk_27

  • Howes WL (1984) Rainbow schlieren and its applications. Appl Opt 23(14):2449–2460

    Google Scholar 

  • Iwasaki Y, Nonomura T, Nakai K, Nagata T, Saito Y, Asai K (2022) Evaluation of optimization algorithms and noise robustness of sparsity-promoting dynamic mode decomposition. IEEE Access 10:748–763

    Google Scholar 

  • Jovanović MR, Schmid PJ, Nichols JW (2014) Sparsity-promoting dynamic mode decomposition. Phys Fluids 26(2):1–22 arXiv:1309.4165v1

  • Kantrowitz A, Trimpi RL (1950) A sharp-focusing schlieren system. J Aeronaut Sci 17(5):311–314

    Google Scholar 

  • Koning WJ, Johnson W, Grip HF (2019) Improved Mars helicopter aerodynamic rotor model for comprehensive analyses. AIAA J 57(9):3969–3979

    Google Scholar 

  • Koning WJF, Romander EA, Cummings HV, Perez Perez BN, Buning PG (2023) On improved understanding of airfoil performance evaluation methods at low Reynolds numbers. J Aircraft, https://doi.org/10.2514/1.C037023

  • Kouchi T, Goyne CP, Rockwell RD, McDaniel JC (2015) Focusing-schlieren visualization in a dual-mode scramjet. Exp Fluids 56:1–14

    Google Scholar 

  • Kusama K, Nagata T, Anyoji M, Nonomura T, Asai K (2021) Investigation of mach number effects on flow over a flat plate at reynolds number of \(1.0 \times 10^4\) by schlieren visualization. Fluid Dyn Res 53(1):015,513

  • Kutz JN, Brunton SL, Brunton BW, Proctor JL (2016) Dynamic mode decomposition: data-driven modeling of complex systems, vol 149. SIAM

  • Lee C, Ozawa Y, Haga T, Nonomura T, Asai K (2021) Comparison of three-dimensional density distribution of numerical and experimental analysis for twin jets. J Vis 24(6):1173–1188

    Google Scholar 

  • Lee C, Ozawa Y, Nagata T, Nonomura T (2023) Superresolution of time-resolved three-dimensional density fields of the B mode in an underexpanded screeching jet. Phys Fluids

  • Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103(1):16–42. https://doi.org/10.1016/0021-9991(92)90324-R

    Article  MathSciNet  MATH  Google Scholar 

  • Liu T, Montefort J, Woodiga S, Merati P, Shen L (2008) Global luminescent oil-film skin-friction meter. AIAA J 46(2):476–485

    Google Scholar 

  • Mangeol E, Ishiwaki D, Wallisky N, Asai K, Nonomura T (2017) Compressibility effects on flat-plates with serrated leading-edges at a low Reynolds number. Exp Fluids 58(11):1–15

    Google Scholar 

  • Mariani R, Lim H, Zang B, Vevek U, New TH, Cui Y (2020) On the application of non-standard rainbow schlieren technique upon supersonic jets. J Vis 23:383–393

    Google Scholar 

  • Martínez-González A, Moreno-Hernández D, Guerrero-Viramontes J (2013) Measurement of temperature and velocity fields in a convective fluid flow in air using schlieren images. Appl Opt 52(22):5562–5569

    Google Scholar 

  • Masini L, Timme S, Peace AJ (2019) Reynolds number effects on wing shock buffet unsteadiness. In: AIAA aviation 2019 forum, p 2820

  • McMasters JH, Henderson ML (1979) Low-speed single-element airfoil synthesis. NASA Langley Res Center The Sci and Technol of Low Speed and Motorless Flight, Pt 1

  • Meier G (2002) Computerized background-oriented schlieren. Exp Fluids 33(1):181–187

    Google Scholar 

  • Morizawa S, Nonomura T, Oyama A, Fujii K, Obayashi S (2018) Effect of Mach number on airfoil characteristics at Reynolds number of 3,000. Trans Japan Soc Aeronaut Space Sci 61(6):258–267

    Google Scholar 

  • Mukohara H, Anyoji M (2022) Computational analysis of compressibility effect on flow field and aerodynamics at low Reynolds numbers. Phys Fluids 34(056):109

    Google Scholar 

  • Munday PM, Taira K, Suwa T, Numata D, Asai K (2015) Nonlinear lift on a triangular airfoil in low-Reynolds-number compressible flow. J Aircr 52(3):924–931

    Google Scholar 

  • Nagata T, Nonomura T, Takahashi S, Mizuno Y, Fukuda K (2016) Investigation on subsonic to supersonic flow around a sphere at low Reynolds number of between 50 and 300 by direct numerical simulation. Phys Fluids 28(5):056,101

  • Nagata T, Noguchi A, Nonomura T, Ohtani K, Asai K (2019) Experimental investigation of transonic and supersonic flow over a sphere for Reynolds numbers of 10−3–105 by free-flight tests with schlieren visualization. Shock Waves 30(2):139–151

    Google Scholar 

  • Nagata T, Noguchi A, Kusama K, Nonomura T, Komuro A, Ando A, Asai K (2020) Experimental investigation on compressible flow over a circular cylinder at Reynolds number of between 1000 and 5000. J Fluid Mech 893:A13. https://doi.org/10.1017/jfm.2020.221

    Article  Google Scholar 

  • Nagata T, Nonomura T, Takahashi S, Fukuda K (2020) Direct numerical simulation of subsonic, transonic and supersonic flow over an isolated sphere up to a Reynolds number of 1000. J Fluid Mech 904:A36. https://doi.org/10.1017/jfm.2020.629

    Article  MathSciNet  MATH  Google Scholar 

  • Nagata T, Nonomura T, Ohtani K, Asai K (2022) Schlieren visualization and motion analysis of an isolated and clustered particle(s) after interacting with planar shock. Trans Japan Soc Aeronaut Space Sci 65(4):185–194

    Google Scholar 

  • Nair AG, Strom B, Brunton BW, Brunton SL (2020) Phase-consistent dynamic mode decomposition from multiple overlapping spatial domains. Phys Rev Fluids 5(7):074,702

  • Nankai K, Ozawa Y, Nonomura T, Asai K (2019) Linear reduced-order model based on PIV data of flow field around airfoil. Trans Japan Soc Aeronaut Space Sci 62(4):227–235. https://doi.org/10.2322/tjsass.62.227

    Article  Google Scholar 

  • Nishida H, Nonomura T (2009) ADI-SGS scheme on ideal magnetohydrodynamics. J Comput Phys 228:3182–3188

    MATH  Google Scholar 

  • Nonomura T, Shibata H, Takaki R (2018) Dynamic mode decomposition using a Kalman filter for parameter estimation. AIP Adv 8(105):106

    Google Scholar 

  • Nonomura T, Shibata H, Takaki R (2019) Extended-kalman-filter-based dynamic mode decomposition for simultaneous system identification and denoising. PloS one 14(2):e0209,836

  • Nonomura T, Nankai K, Iwasaki Y, Komuro A, Asai K (2021) Quantitative evaluation of predictability of linear reduced-order model based on particle-image-velocimetry data of separated flow field around airfoil. Exp Fluids 62:112

    Google Scholar 

  • Ohmichi Y (2017) Preconditioned dynamic mode decomposition and mode selection algorithms for large datasets using incremental proper orthogonal decomposition. AIP Adv 7(7):075,318

  • Ohmichi Y, Ishida T, Hashimoto A (2018) Modal decomposition analysis of three-dimensional transonic buffet phenomenon on a swept wing. AIAA J 56(10):3938–3950

    Google Scholar 

  • Ohmichi Y, Kobayashi K, Kanazaki M (2019) Numerical investigation of wake structures of an atmospheric entry capsule by modal analysis. Phys Fluids 31(7):074,105

  • Ohmizu K, Ozawa Y, Nagata T, Nonomura T, Asai K (2022) Demonstration and verification of exact DMD analysis applied to double-pulsed schlieren image of supersonic impinging jet. J Vis 25:929–943. https://doi.org/10.1007/s12650-022-00836-9

    Article  Google Scholar 

  • Okada K, Aono H, Nonomura T, Kawai S, Fujii K (2016) Effects of time step and convergence rate of implicit scheme on unsteady compressible flow analyses. In: Proceedings of 28th international conference on parallel computational fluid dynamics

  • O’Meara B, Bedick C, Ferguson DH (2018) Experimental investigation of a shock wave using calibrated schlieren images. In: 2018 joint propulsion conference, p 4686

  • Rolandi LV, Jardin T, Fontane J, Gressier J, Joly L (2022) Stability of the low Reynolds number compressible flow past a naca0012 airfoil. AIAA J 60(2):1052–1066

    Google Scholar 

  • Sansica A, Robinet JC, Alizard F, Goncalves E (2018) Three-dimensional instability of a flow past a sphere: Mach evolution of the regular and Hopf bifurcations. J Fluid Mech 855:1088–1115

    MathSciNet  MATH  Google Scholar 

  • Sansica A, Ohmichi Y, Robinet JC, Hashimoto A (2020) Laminar supersonic sphere wake unstable bifurcations. Phys Fluids 32(12):107–126

    Google Scholar 

  • Sato M, Okada K, Asada K, Aono H, Nonomura T, Fujii K (2020) Unified mechanisms for separation control around airfoil using plasma actuator with burst actuation over Reynolds number range of 103–106. Phys Fluids 32(2):025,102 https://doi.org/10.1063/1.5136072

  • Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656(2010):5–28. https://doi.org/10.1017/S0022112010001217. arXiv:1312.0041v1

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt BE, Woike MR (2021) Wavelet-based optical flow analysis for background-oriented schlieren image processing. AIAA J 59(8):3209–3216

    Google Scholar 

  • Settles GS (2001) Schlieren and shadowgraph techniques. Springer

    MATH  Google Scholar 

  • Shigeta T, Nagata T, Nonomura T, Asai K (2022) Enhancement of the signal-to-noise ratio of schlieren visualization measurements in low-density wind tunnel tests using modal decomposition. J Vis 25:697–712

    Google Scholar 

  • Shimazaki T, Ichihara S, Tagawa Y (2022) Background oriented schlieren technique with fast Fourier demodulation for measuring large density-gradient fields of fluids. Exp Thermal Fluid Sci 134(110):598

    Google Scholar 

  • Sourgen F, Leopold F, Klatt D (2012) Reconstruction of the density field using the colored background oriented schlieren technique (cbos). Opt Lasers Eng 50(1):29–38

    Google Scholar 

  • Sugioka Y, Kouchi T, Koike S (2022) Experimental comparison of shock buffet on unswept and 10-deg swept wings. Exp Fluids 63(8):132

    Google Scholar 

  • Sugisaki H, Lee C, Ozawa Y, Nakai K, Saito Y, Nonomura T, Asai K, Matsuda Y (2022) Single-pixel correlation applied to background-oriented schlieren measurement. Exp Fluids 63(1):1–7

    Google Scholar 

  • Tanahashi M, Ootsu M, Fukushima M, Miyauchi T (2002) Measurement of coherent fine scale eddies in turbulent mixing layer by dpiv. In: Engineering turbulence modelling and experiments 5, Elsevier, pp 525–534

  • Tu JH, Rowley CW, Luchtenburg DM, Brunton SL, Kutz JN (2014) On dynamic mode decomposition: theory and applications. J Comput Dyn 1(2):391–421. https://doi.org/10.3934/jcd.2014.1.391

    Article  MathSciNet  MATH  Google Scholar 

  • Vaisakh S, Muruganandam T (2019) Schlieren tomography to visualize three-dimensional supersonic flows. In: 31st International symposium on shock waves 1: fundamentals 31, Springer, pp 421–428

  • Vitkovicova R, Yokoi Y, Hyhlik T (2020) Identification of structures and mechanisms in a flow field by pod analysis for input data obtained from visualization and piv. Exp Fluids 61:1–21

    Google Scholar 

  • Weinstein L (1991) An improved large-field focusing schlieren system. In: 29th aerospace sciences meeting, p 567

  • Weinstein LM (1993) Large-field high-brightness focusing schlieren system. AIAA J 31(7):1250–1255

    Google Scholar 

  • Weisberger JM, Bathel BF (2022) Projection background-oriented schlieren. Appl Opt 61(20):6006–6015

    Google Scholar 

  • Withrow S, Johnson W, Young LA, Koning W, Kuang W, Malpica C, Balaram J, Tzanetos T (2020) Mars science helicopter conceptual design. In: ASCEND 2020, p 4029

Download references

Funding

This work was supported by the Japan Society for the Promotion of Science, KAKENHI Grants JP19H00800, JP21K14071, JP22H00516, and Japan Science and Technology Agency, FOREST Grant Number, JPMJFR202C. T. Nagata was supported by Japan Science and Technology Agency, CREST Grant Number JPMJCR1763.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by TS. The first draft of the manuscript was written by TS, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tsuyoshi Shigeta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shigeta, T., Nagata, T. & Nonomura, T. Density field reconstruction from time-series schlieren images via extended phase-consistent dynamic mode decomposition. Exp Fluids 64, 130 (2023). https://doi.org/10.1007/s00348-023-03668-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-023-03668-x

Navigation