Skip to main content
Log in

Interpreting single-point and two-point focused laser differential interferometry in a turbulent jet

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Focused laser differential interferometry (FLDI) and its relative two-point FLDI (2pFLDI) are used to make density fluctuation and velocity measurements, respectively, in a canonical, round turbulent air jet (\(U_\mathrm{jet}=300\) m/s, \(d=3.2\) mm, \(Re_\mathrm{d}=8.6\times 10^4\)). Both techniques are seedless, non-intrusive, inexpensive (< $5k), and insensitive to vibrations. The FLDI signal is proportional to the phase difference between two closely spaced laser beams passing through the flow. The phase difference is created by index of refraction gradients in the flow, integrated along the beam paths. Transfer functions for interpreting the FLDI signal are proposed as an accurate method for predicting the response in an arbitrary flow. A procedure for applying these transfer functions to a turbulent jet is developed. The procedure is able to model FLDI’s response to fluctuations in the jet with error on the order of 10–50% across a \(\sim \, 100\) kHz band. The transfer functions provide a simple method for estimating the FLDI & 2pFLDI spatial resolution along the optical axis, which is a strong function of disturbance scale, based on three instrument parameters: (1) the laser wavelength, \(\lambda _0\), (2) the beam separation, \(\Delta x_1\), and (3) the beam radius at the focus, \(w_0\). For the 2pFLDI employed in this work (\(\lambda _0=633\) nm, \(\Delta x_1=145\,\mu\)m, \(w_0=3\,\mu\)m), the resolution ranges from 1cm for a 0.9mm disturbance wavelength to 5cm for a 5.5mm disturbance wavelength. The spatiotemporal resolution depends on the convection velocity of the disturbances, as well as the spatiotemporal amplitude variation in the disturbances themselves. We model the velocity and spatial amplitude distribution with Gaussian functions based on historical jet studies and we measure the amplitude variation with frequency directly via FLDI. This leads to 1cm resolution for the smallest timescales measured (100 kHz) up to 5cm resolution for the largest time scales measured (1kHz). 2pFLDI’s relatively large spatial resolution complicates comparisons of velocity measurements to those made using hot-wires. The methods, modeling, and procedures outlined in this work provide a framework for interpreting future FLDI and multi-point FLDI measurements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • American Society of Mechanical Engineers (2006) Test Uncertainty. Tech. rep, ASME, New York, NY

    Google Scholar 

  • Anderson JD (2006) Hypersonic and High-Temperature Gas Dynamics, 2nd edn. American Institute of Aeronautics and Astronautics, Reston, VA

    Book  Google Scholar 

  • Bathel BF, Weisberger JM, Herring GC, King RA, Jones SB, Kennedy RE, Laurence SJ (2020) Two-point, parallel-beam focused laser differential interferometry with a nomarski prism. Appl Opt 59(2):244. https://doi.org/10.1364/ao.59.000244

    Article  Google Scholar 

  • Bathel BF, Weisberger JM, Herring GC, Jagannathan R, Johansen CT, Jones SB, Cavone AA (2021) Analysis of the Amplitude Response of a Two-Point and a Multi-Point Focused Laser Differential Interferometer. In: AIAA Scitech 2021 Forum, January, pp 1–17, https://doi.org/10.2514/6.2021-0598

  • Benitez EK, Jewell JS, Schneider SP (2020) Focused laser differential interferometry for hypersonic flow instability measurements with contoured tunnel windows. AIAA Journal 1 PartF:1–22, https://doi.org/10.2514/6.2020-1282

  • Birch B, Buttsworth D, Zander F (2020) Measurements of freestream density fluctuations in a hypersonic wind tunnel. Exp Fluids 61(7):1–13. https://doi.org/10.1007/s00348-020-02992-w

    Article  Google Scholar 

  • Bonnet JP, Grésillon D, Taran JP (1998) Nonintrusive measurements for high-speed, supersonic, and hypersonic flows. Annu Rev Fluid Mech 30(1):231–273. https://doi.org/10.1146/annurev.fluid.30.1.231

    Article  Google Scholar 

  • Born M, Wolf E (1980) Principles of Optics, 6th edn. Pergamon Press, New York

    MATH  Google Scholar 

  • Boutier A (1992) New Trends in Instrumentation for Hypersonic Research. 1, https://doi.org/10.1007/s13398-014-0173-7.2, arXiv:1011.1669v3

  • Buxton OR, de Kat R, Ganapathisubramani B (2013) The convection of large and intermediate scale fluctuations in a turbulent mixing layer. Physics of Fluids 25(12), https://doi.org/10.1063/1.4837555

  • Ceruzzi AP, Callis BO, Weber DC (2020) Application of Focused Laser Differential Interferometry ( FLDI ) in a Supersonic Boundary Layer. In: AIAA Scitech Forum, pp 1–6

  • De Kat R, Ganapathisubramani B (2015) Frequency-wavenumber mapping in turbulent shear flows. J Fluid Mech 783:166–190. https://doi.org/10.1017/jfm.2015.558

    Article  MathSciNet  MATH  Google Scholar 

  • Favre A, Gaviglio J, Dumas R (1967) Structure of velocity space-time correlations in a boundary layer. Physics of Fluids 10(S138), https://doi.org/10.1063/1.1762432

  • Fisher MJ, Davies PO (1964) Correlation measurements in a non-frozen pattern of turbulence. J Fluid Mech 18(1):97–116. https://doi.org/10.1017/S0022112064000076

    Article  MATH  Google Scholar 

  • Fulghum MR (2014) Turbulence Measurements in High-Speed Wind Tunnels using Focusing Laser Differential Interferometry. PhD thesis, The Pennsylvania State University

  • Gillespie G, Ceruzzi A, Laurence S (2021) Multi-point Focused Laser Differential Interferometry for Noise Measurements in High-Speed Tunnels. In: AIAA Aviation 2021 Forum, https://doi.org/10.2514/6.2021-2918

  • Gragston M, Price T, Davenport K, Zhang Z, Schmisseur JD (2021) Linear array focused-laser differential interferometry for single-shot multi-point flow disturbance measurements. Opt Lett 46(1):154–157

    Article  Google Scholar 

  • Gragston M, Price TJ, Davenport K, John D (2021b) An \(m \times n\) FLDI Array for Single-Shot , Multipoint Disturbance Measurements in High-Speed Flows. AIAA Scitech 2021 Forum (January):1–16, https://doi.org/10.2514/6.2021-0599

  • Hameed A, Parziale NJ (2021) Focused Laser Differential Interferometer Response to a Controlled Phase Object. In: AIAA Scitech 2021 Forum, January, pp 1–10, https://doi.org/10.2514/6.2021-0602

  • Hinze JO, Van Der Hegge Zijnen BG (1949) Transfer of heart and matter in the turbulent mixing zone of an axially symmetrical jet. Appl Sci Res 1(1):435–461. https://doi.org/10.1007/BF02120346

    Article  Google Scholar 

  • Houpt A, Leonov S (2021) Cylindrical Focused Laser Differential Interferometer. AIAA Journal pp 1–9, https://doi.org/10.2514/1.J059750

  • Jewell JS, Hameed A, Parziale NJ, Gogineni SP (2019) Disturbance Speed Measurements in a Circular Jet via Double Focused Laser Differential Interferometry. AIAA Scitech 2019 Forum (January), https://doi.org/10.2514/6.2019-2293, https://arc.aiaa.org/doi/10.2514/6.2019-2293

  • Kolpin MA (1964) The flow in the mixing region of a jet. J Fluid Mech 18(4):529–548. https://doi.org/10.1017/S0022112064000398

    Article  MATH  Google Scholar 

  • Lawson JM (2021) Focused Laser Differential Interferometry. PhD thesis, California Institute of Technology

  • Lawson JM, Neet MC, Grossman IJ, Austin JM (2020) Static and dynamic characterization of a focused laser differential interferometer. Exp Fluid. https://doi.org/10.2514/6.2019-2296

    Article  Google Scholar 

  • Liepmann HW, Roshko A (1957) Elements of Gasdynamics, 1st edn. John Wiley & Sons Inc, New York

    MATH  Google Scholar 

  • Lin CC (1953) On taylor’s hypothesis and the acceleration terms in the navier-stokes equations. Q Appl Math 10(4):295–306. https://doi.org/10.1142/9789814415651_0011

    Article  MathSciNet  MATH  Google Scholar 

  • Neet MC, Lawson JM, Austin JM (2021) Design, alignment, and calibration of a focused laser differential interferometer. Appl Opt 60(26):7903. https://doi.org/10.1364/ao.435112

    Article  Google Scholar 

  • Parziale N (2013) Slender-Body Hypervelocity Boundary-Layer Instability. PhD thesis, California Institute of Technology

  • Parziale NJ, Shepherd JE, Hornung HG (2012) Reflected Shock Tunnel Noise Measurement by Focused Differential Interferometry. 42nd AIAA Aerospace Sciences Meeting (June):1–10

  • Parziale NJ, Shepherd JE, Hornung HG (2013) Differential interferometric measurement of instability in a hypervelocity boundary layer. AIAA J. https://doi.org/10.2514/1.J052013

    Article  MATH  Google Scholar 

  • Parziale NJ, Shepherd JE, Hornung HG (2014) Free-stream density perturbations in a reflected-Shock tunnel. Experiments in Fluids 55(2), https://doi.org/10.1007/s00348-014-1665-0

  • Pate SR, Schueler CJ (1969) Radiated aerodynamic noise effects on boundary-layer transition in supersonic and hypersonic wind tunnels. AIAA J 7(3):450–457

    Article  Google Scholar 

  • Poon TC, Kim T (2006) Engineering Optics with MATLAB. World Scientific Publishing Co., Singapore

    Book  Google Scholar 

  • Reshotko E (2008) Transition issues for atmospheric entry. J Spacecr Rocket doi 10(2514/1):29777

    Google Scholar 

  • Sanderson SR (2005) Simple, adjustable beam splitting element for differential interferometers based on photoelastic birefringence of a prismatic bar. Rev Sci Instrum 76(11):113703. https://doi.org/10.1063/1.2132271

    Article  Google Scholar 

  • Schmidt BE, Shepherd JE (2015) Analysis of focused laser differential interferometry. Appl Opt. https://doi.org/10.1364/AO.54.008459

    Article  Google Scholar 

  • Schneider SP (2001) Effects of high-speed tunnel noise on laminar-turbulent transition. J Spacecr Rocket 38(3):323–333. https://doi.org/10.2514/2.3705

    Article  Google Scholar 

  • Settles GS, Fulghum MR (2016) The focusing laser differential interferometer, an instrument for localized turbulence measurements in refractive flows. J Fluid Eng doi 10(1115/1):4033960

    Google Scholar 

  • Shea JF (1988) Report of the Defense Science Board Task Force on the NATIONAL AEROSPACE PLANE (NASP). Tech. rep, Defense Science Board

    Google Scholar 

  • Siegman AE (1986) Lasers. University Science Books, Sausalito

    Google Scholar 

  • Smeets G (1977) Flow Diagnostics by Laser Interferometry. IEEE Transactions on Aerospace and Electronic Systems (2)

  • Smeets G, George A (1971) Gas-dynamic investigations in a shock tube using a highly sensitive interferometer. IEEE Transactions on Aerospace and Electronic Systems 298(0704)

  • Smeets G, George A (1973) Laser-differential interferometer applications in gas dynamics. IEEE Transactions on Aerospace and Electronic Systems 298(0704)

  • Taylor GI (1938) The spectrum of turbulence. Proceedings of the Royal Society 164(919)

  • Wallace JM (2014) Space-time correlations in turbulent flow: a review. Theor Appl Mech Lett 4(2):022003. https://doi.org/10.1063/2.1402203

    Article  Google Scholar 

  • Weisberger JM, Bathel BF, Herring GC, Buck GM, Jones SB, Cavone AA (2020) Multi-point line focused laser differential interferometer for high-speed flow fluctuation measurements. Appl Opt 59(35):11180–11195

    Article  Google Scholar 

  • Weisberger JM, Bathel BF, Herring GC, Buck GM (2021) Two-line focused laser differential interferometry of a flat plate boundary layer at mach 6. In: AIAA Scitech 2021 Forum, January, pp 1–29, https://doi.org/10.2514/6.2021-0601

  • Welch PD (1967) The use of fast fourier transform for the estimation of power spectra: a method based on time aver. aging Over Short, Modified Periodograms Ik(fn) =-I A h ( % ) [ a k. Tech. Rep. 2

  • Wills JA (1964) On convection velocities in turbulent shear flows. J Fluid Mech 20(3):417–432. https://doi.org/10.1017/S002211206400132X

    Article  MATH  Google Scholar 

  • Witze PO (1974) Centerline velocity decay of compressible free jets. AIAA J 12(4):417–418. https://doi.org/10.2514/3.49262

    Article  Google Scholar 

  • Wygnanski I, Fiedler H (1969) Some measurements in the self-preserving jet. J Fluid Mech 38(03):577. https://doi.org/10.1017/S0022112069000358

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mike Smith and AEDC Tunnel 9 staff for guidance and support. Additional thanks to the Air Force Office of Scientific Research support through the University of Maryland Hypersonic Center of Testing Excellence program, and the University of Maryland Clark Doctoral Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Ceruzzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A derivation of FLDI transfer functions, Eq. 18

A derivation of FLDI transfer functions, Eq. 18

Beginning with the argument of the z-axis integral in Eq. 17, which we will call Z, we have:

$$\begin{aligned}&Z=\int _0^{2\pi }\int _0^\infty I_0(r,\theta )\rho (\mathbf{x} _1,t)rdrd\theta - \nonumber \\&\quad \int _0^{2\pi }\int _0^\infty I_0(r,\theta )\rho (\mathbf{x} _2,t)rdrd\theta \end{aligned}$$
(42)

Plug in the definition of beam intensity profile \(I_0\) (Eq. 12), the density field model \(\rho (x,y,z,t)\) (Eq. 10) and the definitions of the beam paths \(\mathbf{x} _1\) and \(\mathbf{x} _2\) (Eq. 15 and Eq. 16):

$$\begin{aligned}&Z=\int _0^{2\pi }\int _0^\infty \frac{2}{\pi w^2 }\exp \left( -\frac{2r^2}{w^2}\right) g(z)\times \nonumber \\&\quad \int _{-\infty }^\infty A(f)\exp \left[ i\left( k_x\left( x+\frac{\Delta x_1}{2}\right) -2\pi ft+\psi \right) \right] dfrdrd\theta -\nonumber \\&\quad \int _0^{2\pi }\int _0^\infty \frac{2}{\pi w^2 }\exp \left( -\frac{2r^2}{w^2}\right) g(z)\times \nonumber \\&\quad \int _{-\infty }^\infty A(f)\exp \left[ i\left( k_x\left( x-\frac{\Delta x_1}{2}\right) -2\pi ft+\psi \right) \right] dfrdrd\theta \end{aligned}$$
(43)

Next, exchange the order of integration and re-arrange some terms:

$$\begin{aligned}&Z=g\int _{-\infty }^\infty A\int _0^\infty \frac{2r}{\pi w^2 }\exp \left( -\frac{2r^2}{w^2}\right) \times \nonumber \\&\quad \int _0^{2\pi }\exp \left[ i\left( k_x\left( x+\frac{\Delta x_1}{2}\right) -2\pi ft+\psi \right) \right] d\theta drdf- \nonumber \\&\quad g\int _{-\infty }^\infty A\int _0^\infty \frac{2r}{\pi w^2 }\exp \left( -\frac{2r^2}{w^2}\right) \times \nonumber \\&\quad \int _0^{2\pi }\exp \left[ i\left( k_x\left( x-\frac{\Delta x_1}{2}\right) -2\pi ft+\psi \right) \right] d\theta drdf \end{aligned}$$
(44)

Re-arrange more terms and convert from Cartesian to polar coordinates using \(x=rcos(\theta )\):

$$\begin{aligned}&Z=g\int _{-\infty }^\infty A \left( \exp \left[ i\left( k_x\left( +\frac{\Delta x_1}{2}\right) -2\pi ft+\psi \right) \right] \times \right. \nonumber \\&\quad \int _0^\infty \frac{2r}{\pi w^2}\exp \left( -\frac{2r^2}{w^2}\right) \int _0^{2\pi }\exp (ik_xr\cos \theta )d\theta dr- \nonumber \\&\quad \exp \left[ i\left( k_x\left( -\frac{\Delta x_1}{2}\right) -2\pi ft+\psi \right) \right] \times \nonumber \\&\quad \left. \int _0^\infty \frac{2r}{\pi w^2}\exp \left( -\frac{2r^2}{w^2}\right) \int _0^{2\pi }\exp (ik_xr\cos \theta )d\theta dr \right) df \end{aligned}$$
(45)

Re-arrange terms and evaluate the integral over \(\theta\):

$$\begin{aligned}&Z=g\int _{-\infty }^\infty A \exp \left[ i(-2\pi ft+\psi )\right] \times \nonumber \\&\quad \left( \exp \left[ \frac{ik_x\Delta x_1}{2}\right] -\exp \left[ \frac{-ik_x\Delta x_1}{2}\right] \right) \times \nonumber \\&\quad \int _0^\infty \frac{2r}{\pi w^2}\exp \left( -\frac{2r^2}{w^2}\right) 2\pi J_0(k_xr)drdf \end{aligned}$$
(46)

where \(J_0\) is the Bessel function of the first kind. Next, we evalute the subtraction of the two exponential terms and evaluated the integral over beam radius, r. For more detail on this integral evaluation, see the next subsection, appendix 1.

$$\begin{aligned}&Z=g\int _{-\infty }^\infty A \exp \left[ i(-2\pi ft+\psi )\right] \times \nonumber \\&\quad 2i\sin \left( \frac{k_x\Delta x_1}{2}\right) \exp \left( -\frac{k_x^2w^2}{8}\right) df. \end{aligned}$$
(47)

Finally, re-arrange to get the argument of the z-axis integral in Eq. 18.

1.1 A.1 Evaluation of integral over beam radius, r

Start with the integral over r in Eq. 46, which we will call \(\mathcal {R}\):

$$\begin{aligned} \mathcal {R}=\int _0^\infty \frac{4r}{w^2}\exp \left( -\frac{2r^2}{w^2}\right) J_0(k_xr)dr \end{aligned}$$
(48)

Using the definition of the Bessel function of the first kind, \(J_0\):

$$\begin{aligned} \mathcal {R}=\frac{4}{w^2}\int _0^\infty r\exp \left( -\frac{2r^2}{w^2}\right) \left[ \sum _{n=0}^{\infty }\frac{\left( -k_x^2r^2/4\right) ^n}{(n!)^2}\right] dr \end{aligned}$$
(49)

Expand out the sum:

$$\begin{aligned} \mathcal {R}=\frac{4}{w^2}\int _0^\infty r\exp \left( -\frac{2r^2}{w^2}\right) \left[ 1-\frac{k_x^2r^2}{4}+\frac{k_x^4r^4}{64}-...\right] dr \end{aligned}$$
(50)

Re-arrange:

$$\begin{aligned}&\mathcal {R}=\frac{4}{w^2}\left[ \int _0^\infty r\exp \left( -\frac{2r^2}{w^2}\right) dr- \right. \nonumber \\&\quad \frac{k_x^2}{4}\int _0^\infty r^3\exp \left( -\frac{2r^2}{w^2}\right) dr+ \nonumber \\&\quad \left. \frac{k_x^4}{64}\int _0^\infty r^5\exp \left( -\frac{2r^2}{w^2}\right) dr-...\right] \end{aligned}$$
(51)

Evaluate the integrals over r:

$$\begin{aligned} \mathcal {R}=\frac{4}{w^2}\left[ \frac{w^2}{4}-\frac{k_x^2}{4}\left( \frac{w^4}{8}\right) +\frac{k_x^4}{64}\left( \frac{w^6}{8}\right) -...\right] \end{aligned}$$
(52)

Finally, we have:

$$\begin{aligned} \mathcal {R}=1-\frac{k_x^2w^2}{8}+\frac{k_x^4w^4}{128}-... \end{aligned}$$
(53)

Recognizing the Taylor’s series expansion, we have

$$\begin{aligned} \mathcal {R}=\exp \left( -\frac{k_x^2w^2}{8}\right) . \end{aligned}$$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceruzzi, A.P., Cadou, C.P. Interpreting single-point and two-point focused laser differential interferometry in a turbulent jet. Exp Fluids 63, 112 (2022). https://doi.org/10.1007/s00348-022-03459-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-022-03459-w

Navigation