Skip to main content
Log in

Global measurements of hypersonic shock-wave/boundary-layer interactions with pressure-sensitive paint

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Global surface pressure measurements have been carried out on a 7° half-angle circular cone/flare model at nominally zero angle of attack using pressure-sensitive paint (PSP). These experiments were conducted to illustrate the PSP technique’s usefulness and effectiveness at measuring the unsteady structures inherent to hypersonic shock-wave/boundary-layer interactions (SWBLI) on a global scale. Mean and fluctuating surface pressure was measured with a temperature-corrected, high-frequency-response (\(\approx 10\) kHz) anodized-aluminum pressure-sensitive paint (AA-PSP). This AA-PSP was made in-house to provide the high frequency response required. Methodologies for tracking the boundary-layer separation and reattachment shock feet in both time-averaged and instantaneous senses are provided and discussed. Excellent agreement is observed between the different metrics. In addition, spectral analyses were conducted on a global scale providing insights into the unsteady dynamics of the shock feet and structures under the separated shear layer. These spectral analyses identified a smooth, low-frequency bandwidth centered at \(\approx 500\) Hz, which is characteristic of the shock-foot oscillations. These experimental findings validate the usefulness of AA-PSP to provide global physical insights of unsteady SWBLI surface behavior in the hypersonic flow regime. Similar methodologies can be incorporated in future experiments to investigate complex and novel SWBLI.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Anderson J (2006) Hypersonic and high temperature gas dynamics, chap 7, 2nd edn. American Institute of Aeronautics and Astronautics Inc., Reston

    Book  Google Scholar 

  • Arnal D, Délery J (2005) Laminar-turbulent transition and shock wave/boundary layer interaction. Technical Report 116, RTO-EN-AVT

  • Asma C, Paris S, Tapsoba M (2002) Transitional shock-wave boundary layer interaction over a cone-flare model at hypersonic conditions. ESASP Paper 487

  • Babinsky H, Harvey J (2011) Shock wave-boundary-layer interactions. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Baccarella D, Liu Q, Passaro A, Lee T, Do H (2016) Development and testing of the ACT-1 experimental facility for hypersonic combustion research. Meas Sci Technol 27:4

    Article  Google Scholar 

  • Bell JH, Schairer ET, Hand LA, Mehta RD (2001) Surface pressure measurements using luminescent coatings. Annu Rev Fluid Mech 33(1):155–206

    Article  MATH  Google Scholar 

  • Benay R, Chanetz B, Mangin B, Vandomme L, Perraud J (2006) Shockwave/transitional boundary-layer interactions in hypersonic flow. AIAA J 44(6):1243–1254

    Article  Google Scholar 

  • Bogdonoff SM (1955) Some experimental studies of the separation of supersonic boundary layers. Princeton University, Dept. of Aeronautical Engineering, Report 336

  • Bur R, Chanetz B (2009) Experimental study on the PRE-X vehicle focusing on the transitional shock-wave/boundary-layer interactions. Aerosp Sci Technol 13(7):393–401

    Article  Google Scholar 

  • Casper KM, Beresh SJ, Henfling JF, Spillers RW, Hunter P, Spitzer S (2018) Hypersonic fluid–structure interactions on a slender cone. AIAA Paper 2018-1825

  • Cheng T, Deng D, Herman C (2012) Curvature effect quantification for in-vivo IR thermography. In: Proceedings, international mechanical engineering congress and exposition, vol 2

  • Clemens NT, Narayanaswamy V (2014) Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu Rev Fluid Mech 46:469–492

    Article  MathSciNet  MATH  Google Scholar 

  • Currao GMD, McQuellin LP, Neely AJ, Zander F, Buttsworth DR, McNamara JJ, Iahn I (2019) Oscillating shock impinging on a flat plate at Mach 6. AIAA Paper 2019-3077

  • de Luca L, Cardone G, de la Chevalerie D, Fonteneau A (1995) Viscous interaction phenomena in hypersonic wedge flow. AIAA J 33(12):2293–2298

    Article  Google Scholar 

  • de la Chevaleria DA, Fonteneau A, Luca LD, Cardone G (1997) Görtler-type vortices in hypersonic flows: the ramp problem. Exp Therm Fluid Sci 15(2):69–81

    Article  Google Scholar 

  • Degrez G, Simeonides G, Delery J, Vandromme D, Dolling D, Knight D (1993) Shock-wave/boundary-layer interaction in supersonic and hypersonic flows. Report 792. Advisory Group for Aerospace Research and Development

  • Dieudonne W, Boerrigter H, Charbonnier J (1997) Hypersonic flow on a blunted cone-flare model and in the VKI-H3 Mach 6 wind tunnel. von Karman Institute Technical Note 193

  • Dolling DS (2001) Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA J 39(8):1517–1531

    Article  Google Scholar 

  • Dupont P, Haddad C, Debiéve JF (2006) Space and time organization in a shock-induced separated boundary layer. J Fluid Mech 559:255–277

    Article  MATH  Google Scholar 

  • Dussauge JP, Piponniau S (2008) Shock/boundary-layer interactions: possible sources of unsteadiness. J Fluid Struct 24:1166–1175

    Article  Google Scholar 

  • Dwivedi A, Sidharth GS, Nichols JW, Candler GV, Jovanovic MR (2019) Reattachment streaks in hypersonic compression ramp flow: an input–output analysis. J Fluid Mech 880:113–135

    Article  MathSciNet  MATH  Google Scholar 

  • Erengil ME, Dolling DS (1990) Unsteady wave structure near separation in a Mach 5 compression ramp interaction. AIAA J 29(5):728–735

    Article  Google Scholar 

  • Funderburk ML, Narayanaswamy V (2019) Spectral signal quality of fast pressure sensitive paint measurements in turbulent shock-wave/boundary layer interactions. Exp Fluids 60(154):1–20

    Google Scholar 

  • Gaitonde D (2015) Progress in shock wave/boundary layer interactions. Prog Aerosp Sci 72:80–99

    Article  Google Scholar 

  • Ginoux JJ (1971) Streamwise vortices in reattaching high-speed flows: a suggested approach. AIAA J 9(4):759–760

    Article  Google Scholar 

  • Green J (1970) Interactions between shock waves and turbulent boundary layers. Prog Aerosp Sci 11:235–340

    Article  Google Scholar 

  • Gregory JW, Sakaue H, Liu T, Sullivan JP (2014) Fast pressure-sensitive paint for flow and acoustic diagnostics. Annu Rev Fluid Mech 46:303–330

    Article  MathSciNet  MATH  Google Scholar 

  • Hangai T, Kameda M, Nakakita K, Asai K (2002) Time response characteristics of pyrene-based pressure-sensitive coatings on anodic porous alumina. In: 10th International symposium on flow visualization 222(F0269)

  • Hedlund B, Houpt A, Gordeyev S, Leonov S (2017) Measurement of plasma induced flow perturbations affecting a Mach 4.5 corner separation zone. AIAA Paper 2017-0154

  • Heffner K, Chpoun A, Lengrand J (1993) Experimental study of transitional axisymmetric shock-boundary layer interactions at Mach 5. AIAA Paper 1993-3131

  • Hoberg EM, Huffman C, Sanchez-Plesha N, Running CL, Kato N, Im S, Juliano TJ (2019) Characterization of test conditions in the Notre Dame Arc-Heated Wind Tunnel. AIAA Paper 2019-3093

  • Holden M (1991) Studies of the mean and unsteady structure of turbulent boundary layer separation in hypersonic flow. AIAA Paper 1991-1778

  • Holden M (1998) Shock interaction phenomena in hypersonic flows. AIAA Paper 1998-2751

  • Holden M, Carr Z, MacLean M, Wadhams T (2018) Measurements in regions of shock wave/turbulent boundary layer interactions from Mach 5 to 6 at flight duplicated velocities to evaluate and improve the models of turbulence in CFD codes. AIAA Paper 2018-3706

  • Juliano TJ, Peng D, Jensen C, Gregory JW, Liu T, Montefort J, Palluconi S, Crafton J, Fonov S (2011) PSP measurements on an oscillating NACA 0012 airfoil in compressible flow. AIAA Paper 2011-3728

  • Kameda M, Tezuka N, Hangai T, Nakakita K, Amao Y (2004) Adsorptive pressure-sensitive coatings on porous anodized aluminium. Meas Sci Technol 15(3):489–500

    Article  Google Scholar 

  • Kaufman LG, Korkegi RH, Morton L (1972) Shock impingement caused by boundary layer separation ahead of blunt fins. ARL 72-0118

  • Kavandi JL, Callis JB, Gouterman MP, Khalil G, Wright D et al (1990) Luminescent barometry in wind tunnels. Rev Sci Instrum 61:3340–3347

    Article  Google Scholar 

  • Kimmel RL, Adamczak DW, Paull A, Shannon J, Pietsch R, Frost M, Alesi H (2011) HIFiRE-1 preliminary aerothermodynamic measurements. AIAA Paper 2011-3413

  • Kistler AL (1964) Fluctuating wall pressure under a separated supersonic flow. J Acoust Soc Am 36(3):543–550

    Article  Google Scholar 

  • Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75(1):3–8

    Google Scholar 

  • Lash LE, Combs CS, Kreth PA, Schmisseur JD (2017) Study of the dynamics of transitional shock wave-boundary layer interactions using optical diagnostics. AIAA Paper 2017-3123

  • Leinemann M, Radespiel R, Muñoz F, Esquieu S, McKiernan G, Schneider SP (2019) Boundary layer transition on a generic model of control flaps in hypersonic flow. AIAA Paper 2019-1908

  • Lemmon EW, Jacobsen RT (2004) Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int J Thermophys 25(1):21–69

    Article  Google Scholar 

  • Liu T, Sullivan JP (2005) Pressure and temperature sensitive paints, 1st edn. Springer, Berlin

    Google Scholar 

  • Liu T, Campbell B, Bruns S, Sullivan JP (1997) Temperature- and pressure-sensitive luminescent paints in aerodynamics. Appl Mech Rev 50(4):227–246

    Article  Google Scholar 

  • Liu T, Guille M, Sullivan JP (2001) Accuracy of pressure sensitive paint. AIAA J 39(1):103–112

    Article  Google Scholar 

  • Maclean M, Wadhams T, Holden M, Johnson H (2008) Ground test studies of the HIFiRE-1 transition experiment Part 2: computational analysis. J Spacecr Rockets 45(6):1149–1164

    Article  Google Scholar 

  • Mears LJ, Baldwin A, Ali MY, Kumar R, Alvi FS (2020) Spatially resolved mean and unsteady surface pressure in swept SBLI using PSP. Exp Fluids 61(92):1–14

    Google Scholar 

  • Morita K, Suzuki K, Imamura O, Sakaue H (2011) Temperature-cancelled anodized-aluminum pressure sensitive paint for hypersonic wind tunnel application. AIAA Paper 2011-3724

  • Numata D, Fujii S, Nagai H, Asai K (2017) Ultrafast-response anodized-aluminum pressure-sensitive paints for unsteady flow measurement. AIAA J 55(4):1118–1125

    Article  Google Scholar 

  • Olivier F, Jacques C, Jean-Paul C (2016) Numerical analysis of a separated flow on a supersonic cone-flare model. AIAA Paper 2016-3424

  • Pandey A, Casper KM, Spillers R, Soehnel M, Spitzer S (2020) Hypersonic shock wave-boundary-layer interaction on the control surface of a slender cone. AIAA Paper 2020-0815

  • Piponniau S, Dussauge JP, Debiéve JF, Dupont P (2009) A simple model for low-frequency unsteadiness in shock-induced separation. J Fluid Mech 629:87–108

    Article  MATH  Google Scholar 

  • Poggie J, Bisek NJ, Kimmel RL, Stanfield SA (2015) Spectral characteristics of separation shock unsteadiness. AIAA J 53(1):200–214

    Article  Google Scholar 

  • Price AE, Stallings RL (1967) Investigation of turbulent separated flows in the vicinity of fin type protuberances at supersonic Mach numbers. NASA TN D-3840

  • Priebe S, Tu JH, Rowley CW, Martin MP (2016) Low-frequency dynamics in a shock-induced separated flow. J Fluid Mech 807:441–477

    Article  Google Scholar 

  • Roghelia A, Olivier H, Egorov I, Chuvakhov P (2017) Experimental investigation of Görtler vortices in hypersonic ramp flows. Exp Fluids 58(139)

  • Running CL (2019) Hypersonic boundary-layer separation measurements. Master’s thesis, University of Notre Dame, Notre Dame, IN

  • Running CL (2020) Global measurements of axisymmetric hypersonic shock-wave/boundary-layer interactions. PhD thesis, University of Notre Dame, Notre Dame, IN

  • Running CL, Thompson MJ, Juliano TJ, Sakaue H (2017) Boundary-layer separation detection for a cone at high angle of attack in Mach 4.5 flow with pressure-sensitive paint. AIAA Paper 2017-3120

  • Running CL, Juliano TJ, Jewell JS, Borg MP, Kimmel RL (2019a) Hypersonic shock-wave/boundary-layer interactions on a cone/flare. Exp Therm Fluid Sci 109:109911

    Article  Google Scholar 

  • Running CL, Sakaue H, Juliano TJ (2019) Hypersonic boundary-layer separation detection with pressure-sensitive paint for a cone at high angle of attack. Exp Fluids 60(23):1–13

    Google Scholar 

  • Running CL, Juliano TJ, Borg MP, Kimmel RL (2020) Characterization of post-shock thermal striations on a cone/flare. AIAA J 58(5):2352–2358

    Article  Google Scholar 

  • Sakaue H (2005) Luminophore application method of anodized aluminum pressure sensitive paint as a fast responding global pressure sensor. Rev Sci Instrum 76(084101)

  • Sakaue H, Ishii K (2010) A dipping duration study for optimization of anodized-aluminum pressure-sensitive paint. Sensors 10:9799–9807

    Article  Google Scholar 

  • Sakaue H, Ishii K (2010) Optimization of anodized-aluminum pressure-sensitive paint by controlling luminophore concentration. Sensors 10:6836–6847

    Article  Google Scholar 

  • Sakaue H, Sullivan JP (2001) Time response of anodized aluminum pressure-sensitive paint. AIAA J 39(10):1944–1949

    Article  Google Scholar 

  • Sakaue H, Matsumura S, Schneider SP, Sullivan JP (2002) Anodized aluminum pressure sensitive paint for short duration testing. AIAA Paper 2002-2908

  • Sansica A, Sandham ND, Hu Z (2016) Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble. J Fluid Mech 798:5–26

    Article  MathSciNet  MATH  Google Scholar 

  • Schairer E (2001) Optimum thickness of pressure-sensitive paint for unsteady measurements. AIAA J 40(11):2312–2318

    Article  Google Scholar 

  • Schrijer F, Scarano F (2003) Experiments on hypersonic boundary layer separation and reattachment on a blunted cone-flare using quantitative infrared thermography. AIAA Paper 2003-6967

  • Schülein E (2014) Effects of laminar-turbulent transition on the shock-wave/boundary-layer interaction. AIAA Paper 2014-3332

  • Souverein LJ, Bakker PG, Dupont P (2013) A scaling analysis for turbulent shock-wave/boundary-layer interactions. J Fluid Mech 714:505–535

    Article  MathSciNet  MATH  Google Scholar 

  • Stanfield SA, Kimmel RL, Adamczak DW (2012) HIFiRE-1 flight data analysis: Turbulent shock-boundary-layer interaction experiment during ascent. AIAA Paper 2012-2703

  • Stern O, Volmer M (1919) Uber die abklingungszeit der fluoresznez. Phys Z 20:183–188

    Google Scholar 

  • Taira K, Brunton SL, Dawson STM, Rowley CW, Colonius T, McKeon BJ, Schmidt OT, Gordeyev S, Theofilis V, Ukeiley LS (2017) Modal analysis of fluid flows: an overview. AIAA J 55(12):4013–4041

    Article  Google Scholar 

  • Thiele T, Gülhan A, Olivier H (2018) Instrumentation and aerothermal postflight analysis of the rocket technology flight experiment ROTEX-T. J Spacecr Rockets 55(5):1050–1073

    Article  Google Scholar 

  • Thomas FO, Putnam CM, Chu HC (1994) On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions. Exp Fluids 18:69–81

    Article  Google Scholar 

  • Vandomme L, Chanetz B, Benay R, Perraud J (2003) Transitional shock wave boundary layer interactions in hypersonic flow at Mach 5. AIAA Paper 2003-6966

  • Vanstone L, Goller T, Clemens NT, Mears LJ (2019) Separated flow unsteadiness in a Mach 2 swept compression-ramp interaction using high-speed PSP. AIAA Paper 2019-3647

  • Varigonda SV, Narayanaswamy V, Boxx I (2020) Investigations of FSI generated by an impinging SBLI on a thin panel using multivariate imaging of flow/structural properties. AIAA Paper 2020-3001

  • Vermeulen JP, Simeonides G (1992) Parametric studies of shock wave/boundary layer interactions over 2D compression corners at Mach 6. Tech. Rep. 181, von Karman Institute for Fluid Dynamics

  • Wadhams T, Mundy E, Maclean M, Holden M (2008) Ground test studies of the HIFiRE-1 transition experiment Part 1: experimental results. J Spacecr Rockets 45(6):1134–1148

    Article  Google Scholar 

  • Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73

    Article  Google Scholar 

  • Whalen T, Kennedy R, Laurence S, Sullivan B, Bodony D, Buck G (2019) Unsteady surface and flowfield measurements in ramp-induced turbulent and transitional shock-wave boundary-layer interactions at Mach 6. AIAA Paper 2019-1127

  • Willems S, Gülhan A (2013) Experiments on shock induced laminar-turbulent transition on a flat plate at Mach 6. Technical Report. European conference for aeronautics and space sciences (EUCASS)

  • Willems S, Gülhan A, Steelant J (2015) Experiments on shock induced laminar-turbulent transition on the SWBLI in H2K at Mach 6. Exp Fluids 6:56

    Google Scholar 

  • Winkelmann AE (1972) Experimental investigations of a fin protuberance partially immersed in a turbulent boundary layer at Mach 5. NOLTR-72-33

Download references

Acknowledgements

The authors would like to thank Prof. Hirotaka Sakaue and graduate research assistant Daiki Kurihara for their assistance developing the AA-PSP. In addition, thanks goes out to Prof. Sergey Leonov and Prof. Seongkyun Im for allowing access to ACT-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carson L. Running.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Running, C.L., Juliano, T.J. Global measurements of hypersonic shock-wave/boundary-layer interactions with pressure-sensitive paint. Exp Fluids 62, 91 (2021). https://doi.org/10.1007/s00348-021-03194-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-021-03194-8

Navigation