Skip to main content
Log in

Immiscible impact dynamics of droplets onto millimetric films

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The impact of liquid droplets onto a film of an immiscible liquid is studied experimentally across a broad range of parameters [\(Re = O(10^{1}-10^{3})\), \(We = O(10^{2}-10^{3})\)] with the aid of high-speed photography and image analysis. Above a critical impact parameter, \(Re^{1/2}We^{1/4} \approx 100\), the droplet fragments into multiple satellite droplets, which typically occurs as the result of a fingering instability. Statistical analysis indicates that the satellite droplets are approximately log-normally distributed, in agreement with some previous studies and the theoretical predictions of Wu (Prob Eng Mech 18:241–249, 2003). However, in contrast to a recent study by Lhuissier et al. (Phys Rev Lett 110:264503, 2013), we find that it is the modal satellite diameter, not the mean diameter, that scales inversely with the impact speed (or Weber number) and that the dependence is \(d_\mathrm{{mod}} \sim We^{-1/4}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bartolo D, Josserand C, Bonn D (2005) Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. J Fluid Mech 545:329–338

    Article  MATH  Google Scholar 

  • Cossali GE, Marengo M, Coghe A, Zhdanov S (2004) The role of time in single drop splash on thin film. Exp Fluids 36:888–900

    Article  Google Scholar 

  • Fassman BW, Bansmer SE, Moller TJ, Radespiel R, Hartmann M (2013) High velocity impingement of single droplets on a dry smooth surface. Exp Fluids 54:1516

    Article  Google Scholar 

  • Fisher LR, Mitchell EE, Parker NS (1985) Interfacial tensions of commercial vegetable oils with water. J Food Sci 50:1201–1202

    Article  Google Scholar 

  • Halpern A (1949) The surface tension of oils. J Phys Chem 53:895–897

    Article  Google Scholar 

  • Than P, Preziosi L, Jospeh DD, Arney M (1988) Measurement of interfacial tension between immiscible liquids with the spinning rod tensiometer. J Colloid Interface Sci 124:552–559

    Article  Google Scholar 

  • Josserand C, Thoroddsen ST (2016) Drop impact on a solid surface. Annu Rev Fluid Mech 48:365–391

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogorov AN (1941) On the log normal distribution of the fragment sizes under breakage. Dokl Akad Nauk SSSR 31:99

    Google Scholar 

  • Kolmogorov AN (1949) On the breakage of drops in a turbulent flow. Dokl Akad Nauk SSSR 66:825

    MATH  Google Scholar 

  • Lhuissier H, Sun S, Prosperetti A, Lohse D (2013) Drop fragmentation at impact onto a bath of an immiscible liquid. Phys Rev Lett 110:264503

    Article  Google Scholar 

  • Marmanis H, Thoroddsen ST (1996) Scaling of the fingering pattern of an impacting drop. Phys Fluids 8:1344–1346

    Article  Google Scholar 

  • Marmottant P, Villermaux E (2004) Fragmentation of stretched liquid fingers. Phys Fluids 16:2732–2741

    Article  MATH  Google Scholar 

  • Marston JO, Thoroddsen ST (2008) Apex jets from impacting drops. J Fluid Mech 614:293–302

    Article  MATH  Google Scholar 

  • Marston JO, Truscott TT, Speirs NB, Mansoor MM, Thoroddsen ST (2016) Crown sealing and buckling instability during water entry of spheres. J Fluid Mech 794:506–529

    Article  MathSciNet  Google Scholar 

  • Motzkus C, Gehin E, Gensdarmes F (2008) Study of airborne particles produced by normal impact of millimetric droplets onto a liquid film. Exp Fluids 45:797–812

    Article  Google Scholar 

  • Motzkus C, Gensdarmes F, Gehin E (2009) Parameter study of microdroplet formation by impact of millimetre-sized droplets onto a liquid film. J Aerosol Sci 40:680–692

    Article  Google Scholar 

  • Murphy DW, Li C, d’Albignac V, Morra D, Katz J (2015) Splash behaviour and oily marine aerosol production by raindrops impacting oil slicks. J Fluid Mech 780:536–577

    Article  Google Scholar 

  • Riboux G, Gordillo JM (2015) The diameter and velocities of the droplets ejected after splashing. J Fluid Mech 772:630–648

    Article  Google Scholar 

  • Riboux G, Gordillo JM (2014) Experiments of drops impacting a smooth solid surface: a model of a critical impact speed for drop splashing. Phys Rev Lett 113:024507

    Article  Google Scholar 

  • Samenfink W, Elsasser A, Dullenkopf K, Wittig S (1999) Droplet interaction with shear-driven liquid films: analysis of deposition and secondary droplet characteristics. Int J Heat Fluid Flow 20:462–469

    Article  Google Scholar 

  • Stevens CS, Latka A, Nagel SR (2014) Comparison of splashing in high- and low-viscosity liquids. Phys Rev Lett 89:063006

    Google Scholar 

  • Thoroddsen ST, Sakakibara J (1998) Evolution of the fingering pattern of an impacting drop. Phys Fluids 10:1359–1374

    Article  Google Scholar 

  • Thoroddsen ST, Etoh TG, Takehara K (2006) Crown breakup by Marangoni instability. J Fluid Mech 557:63–72

    Article  MATH  Google Scholar 

  • Thoroddsen ST, Thoraval M-J, Takehara K, Etoh TG (2011) Droplet splashing by a slingshot mechanism. Phys Rev Lett 106:034501

    Article  Google Scholar 

  • Thoroddsen ST (2012) The making of a splash. J Fluid Mech 690:1–4

    Article  MATH  Google Scholar 

  • Thoroddsen ST, Takehara K, Etoh TG (2012) Micro-splashing by drop impacts. J Fluid Mech 706:560–570

    Article  MATH  Google Scholar 

  • Tjahjadi M, Stone HA, Ottino JM (1992) Satellite and subsatellite formation in capillary breakup. J Fluid Mech 243:297–317

    Article  Google Scholar 

  • Villermaux E, Bossa B (2011) Drop fragmentation on impact. J Fluid Mech 668:412–435

    Article  MathSciNet  MATH  Google Scholar 

  • Wu Z-N (2003) Prediction of the size distribution of secondary ejected droplets by crown splashing of droplets impinging on a solid wall. Prob Eng Mech 18:241–249

    Article  Google Scholar 

  • Xu L, Zhang WW, Nagel SR (2005) Drop splashing on a dry smooth surface. Phys Rev Lett 94:184505

    Article  Google Scholar 

  • Xu L (2007) Liquid drop splashing on smooth, rough, and textured surfaces. Phys Rev E 75:056316

    Article  Google Scholar 

  • Yarin AL, Weiss DA (1995) Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J Fluid Mech 283:141–173

    Article  Google Scholar 

  • Yarin AL, Roismann IV, Tropea C (2017) Collision phenomena in liquids and solids. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang LV, Brunet P, Eggers J, Deegan RD (2010) Wavelength selection in the crown splash. Phys Fluids 22:122105

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the anonymous reviewers whose comments significantly improved the manuscript, especially with regard to the distributions and physical interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Marston.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 17,435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, S., Toyofuku, G., Hoang, R. et al. Immiscible impact dynamics of droplets onto millimetric films. Exp Fluids 59, 7 (2018). https://doi.org/10.1007/s00348-017-2461-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2461-4

Navigation