Skip to main content
Log in

Evolution of vortical structures in a curved artery model with non-Newtonian blood-analog fluid under pulsatile inflow conditions

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Steady flow and physiological pulsatile flow in a rigid 180° curved tube are investigated using particle image velocimetry. A non-Newtonian blood-analog fluid is used, and in-plane primary and secondary velocity fields are measured. A vortex detection scheme (d 2-method) is applied to distinguish vortical structures. In the pulsatile flow case, four different vortex types are observed in secondary flow: deformed-Dean, Dean, Wall and Lyne vortices. Investigation of secondary flow in multiple cross sections suggests the existence of vortex tubes. These structures split and merge over time during the deceleration phase and in space as flow progresses along the 180° curved tube. The primary velocity data for steady flow conditions reveal additional vortices rotating in a direction opposite to Dean vortices—similar to structures observed in pulsatile flow—if the Dean number is sufficiently high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. This is the only figure in the present study showing the Newtonian fluid results.

  2. Here the terminology “Lyne vortex” refers to the deformed-Lyne vortex based on Sudo et al. (1992).

References

  • Abate J, Whitt W (2006) A unified framework for numerically inverting Laplace transforms. Informs J Comput 18:408–421

    Article  MathSciNet  MATH  Google Scholar 

  • Berger SA, Talbot L, Yao L-S (1983) Flow in curved pipes. Annu Rev Fluid Mech 15:461–512

    Article  MATH  Google Scholar 

  • Bertelsen AF (1975) An experimental investigation of low Reynolds number secondary streaming effects associated with an oscillating viscous flow in a curved pipe. J Fluid Mech 70:519–527

    Article  Google Scholar 

  • Boiron O, Deplano V, Pelissier R (2007) Experimental and numerical studies on the starting effect on the secondary flow in a bend. J Fluid Mech 574:109–129. doi:10.1017/S0022112006004149

    Article  MATH  Google Scholar 

  • Bulusu KV, Plesniak MW (2013) Secondary flow morphologies due to model stent-induced perturbations in a 180° curved tube during systolic deceleration. Exp Fluids. doi:10.1007/s00348-013-1493-7

    Google Scholar 

  • Chandran KB, Yearwood TL (1981) Experimental study of physiological pulsatile flow in a curved tube. J Fluid Mech 111:59–85. doi:10.1017/S0022112081002292

    Article  Google Scholar 

  • Das D, Arakeri JH (1998) Transition of unsteady velocity profiles with reverse flow. J Fluid Mech 374:251–283

    Article  MathSciNet  MATH  Google Scholar 

  • Das D, Arakeri JH (2000) Unsteady laminar duct flow with a given volume flow rate variation. J Appl Mech 67:274–281

    Article  MATH  Google Scholar 

  • Dean WR (1927) Note on the motion of fluid in a curved pipe. London Edinburgh Dublin Philos Mag J Sci 4:208–223

    Article  MATH  Google Scholar 

  • Dean WR (1928) The stream-line motion of fluid in a curved pipe. London Edinburgh Dublin Philos Mag J Sci 5:673–695

    Article  Google Scholar 

  • Dennis SCR, Ng M (1982) Dual solutions for steady laminar flow through a curved tube. Q J Mech Appl Math 35:305–324

    Article  MATH  Google Scholar 

  • Dong R, Chu S, Katz J (1992) Quantitative visualization of the flow within the volute of a centrifugal pump. Part A: technique. J Fluids Eng 114:390–395

    Article  Google Scholar 

  • Eckmann DM, Grotberg JB (1988) Oscillatory flow and mass transport in a curved tube. J Fluid Mech 188:509–527

    Article  MATH  Google Scholar 

  • Giddens DP, Zarins CK, Glagov S (1990) Response of arteries to near-wall fluid dynamic behavior. Appl Mech Rev 43:S98–S102

    Article  Google Scholar 

  • Gijsen FJ, van de Vosse FN, Janssen JD (1999) The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J Biomech 32:601–608. doi:10.1016/S0021-9290(99)00015-9

    Article  Google Scholar 

  • Glenn AL, Bulusu KV, Shu F, Plesniak MW (2012) Secondary flow structures under stent-induced perturbations for cardiovascular flow in a curved artery model. Int J Heat Fluid Flow 35:76–83. doi:10.1016/j.ijheatfluidflow.2012.02.005

    Article  Google Scholar 

  • Hamakiotes CC, Berger SA (1988) Fully developed pulsatile flow in a curved pipe. J Fluid Mech 195:23–55. doi:10.1017/S0022112088002319

    Article  MATH  Google Scholar 

  • Holdsworth DW, Norley CJ, Frayne R, Steinman DA, Rutt BK (1999) Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol Meas 20:219–240. doi:10.1088/0967-3334/20/3/301

    Article  Google Scholar 

  • Huang RF, Yang TF, Lan YK (2010) Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches. Exp Fluids 48:497–508. doi:10.1007/s00348-009-0754-y

    Article  Google Scholar 

  • Jarrahi M, Castelain C, Peerhossaini H (2011) Laminar sinusoidal and pulsatile flows in a curved pipe. J Appl Fluid Mech 4:21–26

    Google Scholar 

  • Ku DN (1997) Blood flow in arteries. Annu Rev Fluid Mech 29:399–434

    Article  MathSciNet  Google Scholar 

  • Long J, Undar A, Manning KB, Deutsch S (2005) Viscoelasticity of pediatric blood and its implications for the testing of a pulsatile pediatric blood pump. ASAIO J 51:563–566. doi:10.1097/01.mat.0000180353.12963.f2

    Article  Google Scholar 

  • Lyne WH (1971) Unsteady viscous flow in a curved pipe. J Fluid Mech 45:13–32. doi:10.1017/S0022112071002970

    Article  MATH  Google Scholar 

  • Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. J Am Med Asoc 282:2035–2042

    Article  Google Scholar 

  • Mallubhotla H, Belfort G, Edelstein WA, Early TA (2001) Dean vortex stability using magnetic resonance flow imaging and numerical analysis. AIChE J 47:1126–1140. doi:10.1002/aic.690470519

    Article  Google Scholar 

  • McClure T (2013) Numerical Inverse Laplace Transform. In: MathWorks, Inc. http://www.mathworks.com/matlabcentral/fileexchange/39035-numerical-inverse-laplace-transform

  • Mullin T, Greated CA (1980) Oscillatory flow in curved pipes. Part 2. The fully developed case. J Fluid Mech 98:397–416

    Article  MathSciNet  MATH  Google Scholar 

  • Naiki T, Yanai Y, Hayabashi K (1995) Evaluation of high polymer solutions as blood analog fluid. J Jpn Soc Biorheol 9:84–89

    Google Scholar 

  • Najjari MR, Montazerin N, Akbari G (2012) Statistical PIV data validity for enhancement of velocity driven parameters in turbomachinery jet-wake flow. In: 20th Annual international conference on mechanical engineering-ISME2012. Shiraz, Iran

  • Najjari MR, Montazerin N, Akbari G (2015) On the presence of spectral shortcut in the energy budget of an asymmetric jet–wake flow in a forward-curved centrifugal turbomachine as deduced from SPIV measurements. J Turbul 16:503–524

    Article  Google Scholar 

  • Najjari MR, Hinke JA, Bulusu KV, Plesniak MW (2016) On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Exp Fluids 57(6):1–6. doi:10.1007/s00348-016-2185-x

    Google Scholar 

  • Nandakumar K, Masliyah JH (1982) Bifurcation in steady laminar flow through curved tubes. J Fluid Mech 119:475–490. doi:10.1017/S002211208200144X

    Article  MATH  Google Scholar 

  • Naruse T, Tanishita K (1996) Large curvature effect on pulsatile entrance flow in a curved tube: model experiment simulating blood flow in an aortic arch. J Biomech Eng 118:180–186. doi:10.1115/1.2795957

    Article  Google Scholar 

  • Panton RL (2005) Incompressible flow. Wiley, New Jersey

    MATH  Google Scholar 

  • Pedersen N (2000) Experimental investigation of flow structures in a centrifugal pump impeller using particle image velocimetry. Technical University of Denmark

  • Shahcheraghi N, Dwyer HA, Cheer AY, Barakat AI, Rutaganira T (2002) Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J Biomech Eng 124:378. doi:10.1115/1.1487357

    Article  Google Scholar 

  • Siggers JH, Waters SL (2005) Steady flows in pipes with finite curvature. Phys Fluids 17:1–18. doi:10.1063/1.1955547

    Article  MathSciNet  MATH  Google Scholar 

  • Soh W, Berger S (1984) Laminar entrance flow in a curved pipe. J Fluid Mech 148:109–135. doi:10.1017/S0022112084002275

    Article  MATH  Google Scholar 

  • Stone PH, Coskun AU, Kinlay S, Clark ME, Sonka M et al (2003) Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans in vivo 6-month follow-up study. Circulation 108:438–444

    Article  Google Scholar 

  • Sudo K, Sumida M, Yamane R (1992) Secondary motion of fully developed oscillatory flow in a curved pipe. J Fluid Mech 237:189–208. doi:10.1017/S0022112092003380

    Article  Google Scholar 

  • Takami T, Sudou K, Sumida M (1984) Pulsating flow in curved pipes: 1st Report, numerical and approximate analyses. Bull JSME 27:2706–2713

    Article  Google Scholar 

  • Talbot L, Gong KO (1983) Pulsatile entrance flow in a curved pipe. J Fluid Mech 127:1–25. doi:10.1017/S002211208300258X

    Article  Google Scholar 

  • Thurston GB (1979) Rheological parameters for the viscosity, viscoelasticity and thixotropy of blood. Biorheology 16:149–162

    Google Scholar 

  • Timité B, Castelain C, Peerhossaini H (2010) Pulsatile viscous flow in a curved pipe: effects of pulsation on the development of secondary flow. Int J Heat Fluid Flow 31:879–896. doi:10.1016/j.ijheatfluidflow.2010.04.004

    Article  Google Scholar 

  • Tiwari P, Antal SP, Burgoyne A, Belfort G, Podowski MZ (2004) Multifield computational fluid dynamics model of particulate flow in curved circular tubes. Theor Comput Fluid Dyn 18:205–220. doi:10.1007/s00162-004-0127-3

    Article  MATH  Google Scholar 

  • Traub O, Berk BC (1998) Laminar shear stress mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18:677–685

    Article  Google Scholar 

  • van Wyk S, Prahl Wittberg L, Bulusu KV, Fuchs L, Plesniak MW (2015) Non-Newtonian perspectives on pulsatile blood-analog flows in a 180° curved artery model. Phys Fluids. doi:10.1063/1.4923311

    Google Scholar 

  • Vlastos G, Lerche D, Koch B, Samba O, Pohl M (1997) The effect of parallel combined steady and oscillatory shear flows on blood and polymer solutions. Rheol Acta 36:160–172

    Article  Google Scholar 

  • Vollmers H (2001) Detection of vortices and quantitative evaluation of their main parameters from experimental velocity data. Meas Sci Technol 12:1199–1207

    Article  Google Scholar 

  • Volodko I, Koliskina V (2008) Transient Flows in Pipes and Channels : Analytical Solutions. In: 4th IASME/WSEAS international conference on energy, environment, ecosystems and sustainable development, pp 265–268

  • Yanase S, Goto N, Yamamoto K (1989) Dual solutions of the flow through a curved tube. Fluid Dyn Res 5:191–201. doi:10.1016/0169-5983(89)90021-X

    Article  Google Scholar 

  • Zalosh RG, Nelson WG (1973) Pulsating flow in a curved tube. J Fluid Mech 59:693–705

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Plesniak.

Appendix: Analytical solution for physiological pulsatile flow a straight pipe

Appendix: Analytical solution for physiological pulsatile flow a straight pipe

Equations (36) are the governing momentum equation in cylindrical coordinates, boundary and initial conditions and mass flux, respectively. The nonzero initial condition (Eq. 5) is obtained from a parabolic fit to the flow rate at the end of the cycle and is used to eliminate the transient effect faster. The velocity, u bulk, on right-hand side of Eq. (6) was calculated from a 28-Fourier mode fit to experimental flow rate obtained by an ultrasonic flowmeter. This equation allows omission of the pressure term from calculations.

$$\frac{\partial u}{\partial t} = - \frac{1}{\rho }\frac{\partial p}{\partial x} + \nu \left( {\frac{{\partial^{2} u}}{{\partial r^{2} }} + \frac{1}{r}\frac{\partial u}{\partial r}} \right)$$
(3)
$$u\left( {R, t} \right) = 0\quad \left. {\frac{\partial u}{\partial r}} \right|_{r = 0,t} = 0$$
(4)
$$u(r,0) = a + cr^{2} \quad a = 0.1366,\quad c = - a/R^{2}$$
(5)
$$\int_{0}^{R} {2\pi ru(r,t){\text{d}}r} = u_{\text{bulk}} (t)\pi R^{2}$$
(6)

A Laplace transform is applied to Eqs. (36) to convert partial differential equation to ordinary differential equation. For brevity, only transformed form of Eqs. (3 and 6) is provided in Eqs. (7 and 8). The overbar (\(\overline{\,\,\,}\)) denotes Laplace transform.

$$\frac{{{\text{d}}^{2} \bar{u}(r,s)}}{{{\text{d}}r^{2} }} + \frac{1}{r}\frac{{{\text{d}}\bar{u}(r,s)}}{{{\text{d}}r}} - \frac{s}{\nu }\bar{u}(r,s) = \frac{1}{\mu }\frac{{{\text{d}}\bar{p}(x,s)}}{{{\text{d}}x}} - \frac{1}{\nu }u(r,0)$$
(7)
$$\int_{0}^{R} {r\bar{u}(r,s){\text{d}}r} = \frac{1}{2}\bar{u}_{\text{bulk}} (s)R^{2}$$
(8)

The solution to Eq. (7) is given in Eq. (9)

$$\bar{u}(r,s) = C_{1} \,I_{0} \left( {r\sqrt {s/r} } \right) + Ar^{2} + D$$
(9)

where \(C_{1} = - \frac{{AR^{2} + D}}{{I_{0} \left( {R\sqrt {s/r} } \right)}}\), \(A = \frac{c}{s}\), \(D = \frac{4c\nu }{{s^{2} }} - \frac{\phi \nu }{s} + \frac{a}{s}\), \(\phi = \frac{1}{\mu }\frac{{{\text{d}}\bar{p}(x,s)}}{{{\text{d}}x}}\) and \(I_{0}\) is the modified Bessel function of zeroth-order first kind. The only unknown in Eq. (9) is ϕ. By substituting \(\bar{u}(r,s)\) from Eq. (9) into Eq. (8), ϕ can be calculated. Therefore, Eq. (9) gives the Laplace transform of the velocity profile. In order to invert the \(\bar{u}(r,s)\) to obtain an expression for the physical velocity profile, a numerical approach was employed because of complexity of the analytical form. An open-source MATLAB code “Numerical inverse Laplace transform” McClure (2013) based on the Talbot algorithm (Abate and Whitt 2006) is used to perform the inversion. The optimum value for the parameter M (precision) in the code was chosen to ensure that calculated velocity profile satisfies the flow rate at each phase. The slight differences (\(\left| {\Delta u} \right|/u_{\text{center}} = 0.3{-}8\,\%\)) between the experimental result and the analytical solution in Fig. 7 are mainly due to errors implicit in the Laplace inversion numerical scheme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najjari, M.R., Plesniak, M.W. Evolution of vortical structures in a curved artery model with non-Newtonian blood-analog fluid under pulsatile inflow conditions. Exp Fluids 57, 100 (2016). https://doi.org/10.1007/s00348-016-2188-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2188-7

Keywords

Navigation