Skip to main content
Log in

Development of a sensitive experimental set-up for LIF fuel wall film measurements in a pressure vessel

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper focusses on fundamental investigations of fuel wall films, which are formed when the spray impinges on the piston or cylinder walls. To reproduce the wide range of operating conditions within homogeneously charged gasoline direct-injection engines, it is necessary to use a film thickness measurement method, which can be applied inside a high-pressure, high-temperature vessel. Hence, we developed a method based on laser-induced fluorescence that reaches: a precision better than 1 µm, a geometric resolution of 31 µm and a practical applicability for wall film thicknesses smaller 80 µm. To obtain accurate film thickness results, we provide a detailed description of the selection of the surrogate fuel isooctane with 3-pentanone as fluorescence tracer and the resulting assembly of the excitation source, beam expander, filters, camera and the essential image processing. Furthermore, advantages and disadvantages of other possible solutions are discussed. Earlier publications provide only little information about the accuracy of their calibration and measurement procedures. Therefore, we tested and compared three basic calibration methods to each other and provide an analysis of possible errors, such as the influence of the preferential evaporation of 3-pentanone. Finally, images of resulting wall films are presented, and practical considerations for the execution of the measurements like recording timings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Almkvist G, Denbratt I, Josefsson G, Magnusson I (1995) Measurements of fuel film thickness in the inlet port of an S.I. engine by laser induced fluorescence. SAE paper 952483. doi:10.4271/952483

  • Alonso M, Kay PJ, Bowen PJ, Gilchrist R, Sapsford S (2010) A laser induced fluorescence technique for quantifying transient liquid fuel films utilizing total internal reflection. Exp Fluids 48(1):133–142. doi:10.1007/s00348-009-0720-8

    Article  Google Scholar 

  • Alonso M, Kay PJ, Bowen PJ, Gilchrist R, Sapsford S (2012) Quantification of transient fuel films under elevated ambient pressure environments. At Sprays 22(1):79–95. doi:10.1615/AtomizSpr.004865

    Article  Google Scholar 

  • Al-Sibai F (2004) Experimentelle Untersuchung der Strömungscharakteristik und des Wärmeübergangs bei welligen Rieselfilmen. Dissertation, RWTH Aachen

  • Borgetto N, Galizzi C, André F, Escudié D (2010) A thickness measurement technique based on low-coherence interferometry applied to a liquid film with thermal gradient. Exp Therm Fluid Sci 34(8):1242–1246. doi:10.1016/j.expthermflusci.2010.05.004

    Article  Google Scholar 

  • Braeuer A, Beyrau F, Leipertz A (2006) Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bar using 248 nm excitation laser wavelength: experiments and model improvements. Appl Opt 45(20):4982–4989. doi:10.1364/AO.45.004982

    Article  Google Scholar 

  • Charogiannis A, Beyrau A (2013) Laser induced phosphorescence imaging for the investigation of evaporating liquid flows. Exp Fluids 54:1518. doi:10.1007/s00348-013-1518-2

    Article  Google Scholar 

  • Cheng Y, Deng K, Li T (2010) Measurement and simulation of wall-wetted fuel film thickness. Int J Therm Sci 49(4):733–739. doi:10.1016/j.ijthermalsci.2009.10.006

    Article  Google Scholar 

  • Cheung H (2011) Tracer-based planar laser-induced fluorescence diagnostics: quantitative photo physics and time-resolved imaging. Dissertation, Stanford University

  • Cho H, Min K (2003) Measurement of liquid fuel film distribution on the cylinder liner of a spark ignition engine using the laser-induced fluorescence technique. Meas Sci Technol 14(7):975–982. doi:10.1088/0957-0233/14/7/310

    Article  Google Scholar 

  • Davy M, Williams P, Han D, Steeper R (2003) Evaporation characteristics of the 3-pentanone–isooctane binary system. Exp Fluids 35(1):92–99. doi:10.1007/s00348-003-0639-4

    Google Scholar 

  • Drake MC, Fansler TD, Solomon AS, Szekely GA (2003) Piston fuel films as a source of smoke and hydrocarbon emissions from a wall-controlled spark-ignited direct-injection engine. SAE paper 2003-01-0547. doi:10.4271/2003-01-0547

  • Fansler TD, Drake MC (2006) “Designer diagnostics” for developing direct-injection gasoline engines. J Phys: Conf Ser. doi:10.1088/1742-6596/45/1/001

    Google Scholar 

  • Ford RAJ, Foord CA (1978) Laser-based fluorescence techniques for measuring thin liquid films. Wear 51(2):289–297. doi:10.1016/0043-1648(78)90267-3

    Article  Google Scholar 

  • Fujikawa T, Hattori Y, Aklhama K (1997) Quantitative 2-D fuel distribution measurements in an SI engine using laser induced fluorescence with suitable combination of fluorescence tracer and excitation wavelength. SAE paper 972944. doi:10.4271/972944

  • Fujikawa T, Hattori Y, Akihama K, Koike M, Kobayashi T, Matsushita S (1998) Quantitative 2-D fuel distribution measurements in a direct-injection gasoline engine using laser-induced fluorescence technique. In: 4th International symposium COMODIA 98, pp 317–322

  • Gambaryan-Roisman T (2010) Marangoni convection, evaporation and interface deformation in liquid films on heated substrates with non-uniform thermal conductivity. Int J Heat Mass Transf 53(1–3):390–402. doi:10.1016/j.ijheatmasstransfer.2009.09.017

    Article  MATH  Google Scholar 

  • Greszik D, Yang H, Dreier T, Schulz C (2011) Measurement of water film thickness by laser-induced fluorescence and Raman imaging. Appl Phys B 102:123–132. doi:10.1007/s00340-010-4200-x

    Article  Google Scholar 

  • Han D, Steeper R (2002) Examination of iso-octane/ketone mixtures for quantitative LIF measurements in a DISI engine. SAE paper 2002-01-0837. doi:10.4271/2002-01-0837

  • Hansen DA, Lee EKC (1975) Radiative and nonradiative transitions in the first excited singlet state of symmetrical methyl-substituted acetones. J Chem Phys 62:183. doi:10.1063/1.430259

    Article  Google Scholar 

  • Hewitt GF (1969) Disturbance waves in annular two-phase flow. Proc Inst Mech Eng Conf Proc 184(33):142–150. doi:10.1243/PIME_CONF_1969_184_090_02

    Google Scholar 

  • Hiby JW (1968) Eine Fluoreszenzmethode zur Untersuchung des Transportmechanismus bei der Gasadsorption im Rieselfilm. Wärme- und Stoffübertragung Bd.1, pp 105–116

  • Hidrovo CH, Hart D (2001) Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement. Meas Sci Technol 12(4):467–477. doi:10.1088/0957-0233/12/4/310

    Article  Google Scholar 

  • Iida M, Yoshikawa K, Tanaka H, Wang G, Arcoumanis C (2009) Fuel film behavior analysis using simulated intake port. SAE Int J Engines 2(2):2009. doi:10.4271/2009-32-0129

    Google Scholar 

  • Kay P, Bowen P, Gold M, Sapsford S (2006) Development of a 2D quantitative LIF technique towards measurement of transient liquid fuel films. ICLASS06-181

  • Koban W (2005) Photo physical characterization of toluene and 3-pentanone for quantitative imaging of fuel/air ratio and temperature in combustion systems. Dissertation, University of Heidelberg

  • Koban W, Koch JD, Hanson RK, Schulz C (2004) Absorption and fluorescence of toluene vapor at elevated temperatures. Phys Chem Chem Phys 6:2940–2945. doi:10.1039/B400997E

    Article  Google Scholar 

  • Koch JD, Gronki J, Hanson RK (2008) Measurements of near-UV absorption spectra of acetone and 3-pentanone at high temperatures. J Quant Spectrosc Radiat Transf 109(11):2037–2044. doi:10.1016/j.jqsrt.2008.02.010

    Article  Google Scholar 

  • Lan H, Friedrich M, Armaly BF, Drallmeier JA (2008) Simulation and measurement of 3D shear-driven thin liquid film flow in a duct. Int J Heat Fluid Flow 29(2):449–459. doi:10.1016/j.ijheatfluidflow.2007.12.003

    Article  Google Scholar 

  • Le Coz JF, Baritaud T (1996) Application of laser induced fluorescence for measuring the thickness of evaporating gasoline liquid films. In: Developments in laser techniques and applications to fluid mechanics, pp 115–131. doi:10.1007/978-3-642-79965-5_8

  • Lin MT, Sick V (2002) Mixture evaporative characteristics prediction for LIF measurements using PSRK (Predictive Soave-Redlich-Kwong) equation of state. SAE paper 2002-01-2750. doi:10.4271/2002-01-2750

  • Lindgren R, Block R, Denbratt I (2002) Development of a wall film thickness measurement device. Bristol Inst of Phys Conf Ser 177:83–88

    Google Scholar 

  • Magnusson A, Begliatti M, Hervás FB, Andersson M (2010) Characterization of wall film formation from impinging diesel fuel sprays using LIF. ILASS Europe

  • Maligne D, Bruneaux G (2011) Time-resolved fuel film thickness measurement for direct injection si engines using refractive index matching. SAE paper 2011-01-121. doi:10.4271/2011-01-1215

  • Okamoto S, Kawashima H, Ishima T, Nakama K (2012) Analysis of the fuel adhering to a model engine cylinder by using time series LIF methods. ICLASS 2012

  • Ossler F, Aldén M (1997) Measurements of picosecond laser induced fluorescence from gas-phase 3-pentanone and acetone: implications to combustion diagnostics. Appl Phys B 64(4):493–502. doi:10.1007/s003400050205

    Article  Google Scholar 

  • Park S, Ghandhi JB (2005) Fuel film temperature and thickness measurements on the piston crown of a direct-injection spark-ignition engine. SAE paper 2005-01-0649. doi:10.4271/2005-01-0649

  • Pfadler S, Beyrau F, Löffler M, Leipertz A (2006) Application of a beam homogenizer to planar laser diagnostics. Opt Express 14(22):10171–10180. doi:10.1364/OE.14.010171

    Article  Google Scholar 

  • Porter JM, Jeffries JB, Hanson RK (2011) Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness. Appl Phys B 102:345–355. doi:10.1007/s00340-010-3942-9

    Article  Google Scholar 

  • Reid RC, Prausnitz JM, Poling BE (1988) The properties of gases and liquids, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Roisman IV, Horvat K, Tropea C (2006) Spray impact: rim transverse instability initiating fingering and splash: description of a secondary spray. Phys Fluids 18:102104. doi:10.1063/1.2364187

    Article  MathSciNet  Google Scholar 

  • Schulz C, Sick V (2005) Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Prog Energy Combust Sci 31(1):75–121. doi:10.1016/j.pecs.2004.08.002

    Article  Google Scholar 

  • Schulz F, Schmidt J, Kufferath A, Samenfink W (2014) Gasoline wall films and spray/wall interaction analyzed by infrared thermography. SAE Int J Engines 7(3):2014. doi:10.4271/2014-01-1446

    Article  Google Scholar 

  • Senda J, Ohnishi M, Takahashi T, Fujimoto H, Utsunomiya A, Wakatabe M (1999) Measurement and modelling on wall-wetted fuel film profile and mixture preparation in intake port of SI engine. SAE paper 1999-01-0798. doi:10.4271/1999-01-0798

  • Takahashi Y, Nakase Y, Ichinose H (2006) Analysis of the fuel film thickness of a port fuel Injection engine. SAE paper 2006-05-0223

  • Tibiriçá CB, do Nascimento FJ, Ribatski G (2010) Film thickness measurement techniques applied to micro-scale two-phase flow systems. Exp Therm Fluid Sci 34(4):463–473. doi:10.1016/j.expthermflusci.2009.03.009

    Article  Google Scholar 

  • Weiss C (2005) The liquid deposition fraction of sprays impinging vertical walls and flowing films. Int J Multiphase Flow 31(1):115–140. doi:10.1016/j.ijmultiphaseflow.2004.08.004

    Article  MATH  Google Scholar 

  • Yang H, Greszik D, Dreier T, Schulz C (2010) Simultaneous measurement of liquid water film thickness and vapor temperature using near-infrared tunable diode laser spectroscopy. Appl Phys B 99:385–390. doi:10.1007/s00340-010-3980-3

    Article  Google Scholar 

  • Yuan Y, Avener ME, Horner-Devine AR (2011) A two-color optical method for determining layer thickness in two interacting buoyant plumes. Exp Fluids 50(5):1235–1245. doi:10.1007/s00348-010-0969-y

    Article  Google Scholar 

  • Zhang R, Bohac SV, Sick V (2006) Stability of isooctane mixtures with 3-pentanone or biacetyl as fluorescence tracers in combustion experiments. Exp Fluids 40(1):161–163. doi:10.1007/s00348-005-0057-x

    Article  Google Scholar 

  • Zhao H, Ladommatos N (1998) Optical diagnostics for in-cylinder mixture formation measurements in IC engines. Prog EnergyCombust Sci 24:297–336. doi:10.1016/S0360-1285(98)80026-9

    Article  Google Scholar 

  • Zheng Y, Xie X, Lai M-C, VanDerWege B (2012) Measurement and simulation of DI spray impingements and film characteristics. ICLASS 2012

  • Zhengbai L, Jingwei Z, Yueshang L (1990) Experimental Investigation of film-space atomization combustion in DI-diesel engines. SAE paper 901578. doi:10.4271/901578

  • Zoboralski A, Günther M, Liebsch S, Kratzsch M (2013) Endoskopische laserinduzierte Fluoreszenz zur Untersuchung der Gemischbildung an Vollmotoren. In: Proceedings of the 11th congress engine combustion processes, Ludwigsburg, Germany, pp 265–278

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Schulz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulz, F., Schmidt, J. & Beyrau, F. Development of a sensitive experimental set-up for LIF fuel wall film measurements in a pressure vessel. Exp Fluids 56, 98 (2015). https://doi.org/10.1007/s00348-015-1971-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-1971-1

Keywords

Navigation