Skip to main content
Log in

Temperature measurements in an axisymmetric methane–air flame using Talbot images

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The paper discusses the principles of optical testing of transparent objects using the Talbot images method and its applicability to diagnostic of flames. The experimental study was performed for premixed methaneair flame formed by an axisymmetric nozzle. The local deflection angles of the probe radiation were determined from measurements of the relative displacements of intensity maxima of the Talbot image which is caused by passing of light through the flame. The Abel integral equation was solved to reconstruct the refractive index distribution in the flame. Calculation of the temperature field from the refractive index data was based on neglecting the spatial variation of the component composition. Inaccuracy of the calculations was evaluated by comparing the results with the thermocouple measurements. The results demonstrate that the Talbot images method can be used to measure the temperature distribution in axisymmetric reacting gas flows with high spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bar-Ziv E, Sgulim S, Kafri O, Keren E (1982) Measurement of temperature distributions in a methaneair flame by moiré deflectometry. Proc Combust Inst 19:303–310. doi:10.1016/S0082-0784(82)80201-4

    Article  Google Scholar 

  • Bar-Ziv E, Sgulim S, Kafri O, Keren E (1983) Temperature mapping in flames by moire deflectometry. Appl Opt 22:698–705

    Article  Google Scholar 

  • Doroshko M, Khramtsov P, Penyazkov O, Shikh I (2008) Measurements of admixture concentration fluctuations in a turbulent shear flow using an averaged Talbot image. Exp Fluids 44:461–468. doi:10.1007/s00348-007-0348-5

    Article  Google Scholar 

  • Eckbreth A, Hall R (1979) CARS thermometry in a sooting flame. Combust Flame 36:87–98. doi:10.1016/0010-2180(79)90048-8

    Article  Google Scholar 

  • Farrell P, Hoffeldt D (1984) Temperature measurement in gases using speckle photography. Appl Opt 23:1055–1059

    Article  Google Scholar 

  • Farrell P, Springer G, Vest C (1982) Heterodyne holographic interferometry: concentration and temperature measurements in gas mixtures. Appl Opt 21:1624–1627

    Article  Google Scholar 

  • Fomin N, Lavinskaya E, Takayama K (2006) Limited projections laser speckle tomography of complex flows. Opt Laser Eng 44:335–349. doi:10.1016/j.optlaseng.2005.04.008

    Article  Google Scholar 

  • Hanson R, Seitzman J, Paul P (1990) Planar laser-fluorescence imaging of combustion gases. Appl Phys 50:441–454

    Article  Google Scholar 

  • Ibarreta A, Sung C (2005) Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow schlieren deflectometry. Appl Opt 44:3565–3575. doi:10.1364/AO.44.003565

    Article  Google Scholar 

  • Keren E, Bar-Ziv E, Glatt I, Kafri O (1981) Measurements of temperature distribution of flames by moire deflectometry. Appl Opt 20:4263–4266

    Article  Google Scholar 

  • Khramtsov P, Penyazkov O, Shatan I, Shikh I (2013) Talbot method of investigation of the concentration distribution of methane in a turbulent axisymmetric jet. J Eng Phys Thermophys 86:247–255

    Article  Google Scholar 

  • Nyholm K, Fritzon R, Aldén M (1993) Two-dimensional imaging of OH in flames by use of polarization spectroscopy. Opt Lett 18:1672–1674

    Article  Google Scholar 

  • Patorski K (1989) The self-imaging phenomenon and its applications. In: Wolf E (ed) Progress in optics XXVII. Elsevier Science Publisher BV, Amsterdam, pp 3–108

  • Posner J, Dunn-Rankin D (2003) Temperature field measurements of small, nonpremixed flames with use of an abel inversion of holographic interferograms. Appl Opt 42:952–959

    Article  Google Scholar 

  • Qin X, Xiao X, Puri I, Aggarwal S (2002) Effect of varying composition on temperature reconstructions obtained from refractive index measurements in flames. Combust Flame 128:121–132. doi:10.1016/S0010-2180(01)00338-8

    Article  Google Scholar 

  • Salama N, Patrignani D, De Pasquale L, Sicre E (1999) Wavefront sensor using the Talbot effect. Opt Laser Technol 31:269–272. doi:10.1016/S0030-3992(99)00053-5

    Article  Google Scholar 

  • Seeger T, Jonuscheit J, Schenk M, Leipertz A (2003) Simultaneous temperature and relative oxygen and methane concentration measurements in a partially premixed sooting flame using a novel CARS-technique. J Mol Struct 661–662:515–524

    Article  Google Scholar 

  • Seitzman J, Hanson R (1993) Planar fluorescence imaging in gases. In: Taylor A (ed) Experimental methods for flows with combustion. Academic Press, London

    Google Scholar 

  • Shakher C, Daniel A (1994) Talbot interferometer with circular gratings for the measurement of temperature in axisymmetric gaseous flames. Appl Opt 33:6068–6072

    Article  Google Scholar 

  • Shakher C, Nirala A, Pramila J, Verma S (1992) Use of speckle technique for temperature measurement in gaseous flame. J Optic 23:35–39

    Article  Google Scholar 

  • Shakher C, Pramila Daniel A, Angra S (1994) Measurement of the temperature profile of an atomic absorption spectrophotometer burner using a Talbot interferometer with circular gratings. Opt Eng 33:2663–2669

    Article  Google Scholar 

  • Sharma D, Stephen S, Natarajan R (1998) Structure of burning n-hexane droplet by moire deflectometry. Combust Sci Technol 131:305–321

    Article  Google Scholar 

  • Siegel Ch, Loewenthal F, Balmer J (2001) A wavefront sensor based on the fractional Talbot effect. Opt Commun 194:265–275. doi:10.1016/S0030-4018(01)01288-3

    Article  Google Scholar 

  • Silva D (1972) Talbot interferometer for radial and lateral derivatives. Appl Opt 11:2613–2624

    Article  Google Scholar 

  • Stevens R., Ewart P. (2006) Simultaneous single-shot measurement of temperature and pressure along a one-dimensional line by use of laser-induced thermal grating spectroscopy. Opt. Lett 31(8):1055–1057

  • Talbot H (1836) Facts relating to optical science no. IV. Philos Mag 9:401–407

    Google Scholar 

  • Thakur M, Vyas A, Shakher C (2002) Measurement of temperature profile of a gaseous flame with a Lau phase interferometer that has circular gratings. Appl Opt 41:654–657

    Article  Google Scholar 

  • Ulanovskiy A, Medvedev V, Nenashev S, Sild Yu, Matveyev M, Pokhodun A, Oleynikov P (2010) Thermoelectric characteristic of high-temperature thermocouples W5%RE/W20%RE. Int J Thermophys 31:1573–1582

    Article  Google Scholar 

  • Vasiliev L (1968) Schlieren methods. Nauka Press, Moscow

    Google Scholar 

  • Wen J, Zhang Y, Xiao M (2013) The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Adv Opt Photon 5:83–130

    Article  Google Scholar 

  • Wong T, Agrawal A (2006) Quantitative measurements in an unsteady flame using high-speed rainbow schlieren deflectometry. Meas Sci Technol 17:1503–1510. doi:10.1088/0957-0233/17/6/031

    Article  Google Scholar 

  • Xiao X, Puri I (2001) Systematic approach based on holographic interferometry measurements to characterize the flame structure of partially premixed flames. Appl Opt 40:731–740

    Article  Google Scholar 

  • Xiao X, Puri I, Agrawal A (2002) Temperature measurements in steady axisymmetric partially premixed flames by use of rainbow schlieren deflectometry. Appl Opt 41:1922–1928. doi:10.1364/AO.41.001922

    Article  Google Scholar 

  • Xiaoa X, Choia C, Puri I (2000) Temperature measurements in steady two-dimensional partially premixed flames using laser interferometric holography. Combust Flame 120:318–332. doi:10.1016/S0010-2180(99)00100-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Shatan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khramtsov, P.P., Penyazkov, O.G. & Shatan, I.N. Temperature measurements in an axisymmetric methane–air flame using Talbot images. Exp Fluids 56, 31 (2015). https://doi.org/10.1007/s00348-015-1906-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-1906-x

Keywords

Navigation