Skip to main content
Log in

Proper orthogonal decomposition based outlier correction for PIV data

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Particle image velocimetry (PIV) is a powerful tool to study complex flows quantitatively. Post-processing of PIV data is necessary for outlier correction (OC) because of the image noise. Traditional methods detect and correct spurious vectors, respectively, using local statistical models. A new method proposed in this paper iteratively detects and replaces outliers using proper orthogonal decomposition (POD), which can dynamically approximate the original pure velocity field. The new algorithm, named as POD-OC, reconstructs a reference velocity field using low-order POD modes to detect outliers and uses that reference field for OC as well. Compared with the method of normalized median test, POD-OC is more efficient for detecting clustered outliers. It is also more accurate than other common interpolation approaches on outlier fixing. A novel block POD-OC is also designed for post-processing on an instantaneous velocity field, which overcomes the limit that POD can only be applied on a dataset with a large number of instantaneous fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Andrea S, Bernhard W, Fulvio S (2013) PIV uncertainty quantification by image matching. Meas Sci Technol 24(4):045–302

    Google Scholar 

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25(1):539–575

    Article  MathSciNet  Google Scholar 

  • Cheminet A, Leclaire B, Champagnat F, Cornic P, Le Besnerais G (2013) On factors affecting the quality of tomographic reconstruction. In: Proceedings of PIV13 Delft, Netherlands

  • Elsinga GE, Tokgoz S (2014) Ghost hunting-an assessment of ghost particle detection and removal methods for tomographic-PIV. Meas Sci Technol 25(8):084004

    Article  Google Scholar 

  • Elsinga GE, Westerweel J, Scarano F, Novara M (2011) On the velocity of ghost particles and the bias errors in tomographic-PIV. Exp Fluid 50:825–838

    Article  Google Scholar 

  • Everson R, Sirovich L (1995) Karhunen-love procedure for gappy data. J Opt Soc Am A 12(8):1657–1664

    Article  Google Scholar 

  • Ganapathisubramani B, Hutchins N, Hambleton WT, Longmire EK, Marusic I (2005) Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J Fluid Mech 524:57–80

    Article  MATH  Google Scholar 

  • Garcia D (2011) A fast all-in-one method for automated post-processing of PIV data. Exp Fluids 50:1247–1259

    Article  Google Scholar 

  • GmbH (2009) http://www.pivtec.com

  • Gunes H, Rist U (2007) Spatial resolution enhancement/smoothing of stereołparticle-image-velocimetry data using proper-orthogonal-decompositionłbased and kriging interpolation methods. Phys Fluids 19:064101–064119

    Article  Google Scholar 

  • Gunes H, Sirisup S, Karniadakis GE (2006) Gappy data: to krig or not to krig? J Comput Phys 212(1):358–382

    Article  MATH  Google Scholar 

  • Huang H, Dabiri D, Gharib M (1997) On errors of digital particle image velocimetry. Mea Sci Technol 8(12):1427

    Article  Google Scholar 

  • Liang DF, Jiang CB, Li YL (2003) Cellular neural network to detect spurious vectors in PIV data. Exp Fluids 34(1):52–62

    Article  Google Scholar 

  • Lumley JL (1967) The structure of inhomogeneous turbulent flows. In: Yaglom AM, Tatarski VI (eds) Atmospheric turbulence and radio wave propagation. Nauka, Moscow, pp 166–178

    Google Scholar 

  • Nogueira J, Lecuona A, Rodrłguez PA (1999) Local field correction PIV: on the increase of accuracy of digital PIV systems. Exp Fluids 27(2):107–116

    Article  Google Scholar 

  • Pan C, Wang HP, Wang JJ (2013) Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate. Meas Sci Technol 24(5):055–305

    Article  Google Scholar 

  • Pun CS, Susanto A, Dabiri D (2007) Mode-ratio bootstrapping method for PIV outlier correction. Meas Sci Technol 18(11):3511–3522

    Article  Google Scholar 

  • Raben SG, Charonko JJ, Vlachos PP (2012) Adaptive gappy proper orthogonal decomposition for particle image velocimetry data reconstruction. Meas Sci Technol 23(2):025–303

    Article  Google Scholar 

  • Raffel M, Willert CE, Kompenhans J (1999) Particle Image velocimetry, a practical guide. Springer, Heidelberg

    Google Scholar 

  • Scarano F (2002) Iterative image deformation methods in PIV. Meas Sci Technol 13(1):R1

    Article  Google Scholar 

  • Shinneeb AM, Bugg JD, Balachandar R (2004) Variable threshold outlier identification in PIV data. Meas Sci Technol 15(9):1722

    Article  Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. I-Coherent structures. II-Symmetries and transformations. III-Dynamics and scaling. Q Appl Math 45:561–571

    MATH  MathSciNet  Google Scholar 

  • Thomas L, Tremblais B, David L (2014) Optimization of the volume reconstruction for classical Tomo-PIV algorithms (mart, bimart and smart): synthetic and experimental studies. Meas Sci Technol 25(3):035–303

    Article  Google Scholar 

  • Venturi D, Karniadakis GE (2004) Gappy data and reconstruction procedures for flow past a cylinder. J Fluid Mech 519:315–336

    Article  MATH  MathSciNet  Google Scholar 

  • Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data sets. Exp Fluids 16:236–247

    Google Scholar 

  • Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39:1096–1100

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (11472030, 11102013, 11327202). We would like to thank Professor E. Longmire and Professor B. Ganapathisubramani for providing the PIV data of turbulent boundary layer flow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Gao, Q., Feng, L. et al. Proper orthogonal decomposition based outlier correction for PIV data. Exp Fluids 56, 43 (2015). https://doi.org/10.1007/s00348-015-1894-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-1894-x

Keywords

Navigation