Skip to main content
Log in

Mixing enhancement of an axisymmetric jet using flaplets with zero mass-flux excitation

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A novel active control concept aimed at mixing enhancement of an axisymmetric incompressible jet was investigated experimentally. The lip of the jet was equipped with evenly distributed small flaps, or flaplets, deflected away from the stream at an angle of 30°. Controlled attachment of the jet’s boundary layer to the flaps was achieved by introducing zero mass-flux perturbations through control slots located at the base of the flaps, yielding a radial deflection of the shear layer. As a result, pairs of strong streamwise vortices of a finite length were periodically generated and shed in phase with the control signal. At a Strouhal number of 0.3 based on the nozzle diameter, the perturbations also regulated the shedding of spanwise vortex rings. Hot-wire measurements in the vicinity of the flaplets as well as phase-averaged stereoscopic PIV measurements at various streamwise locations were employed to elucidate the mechanism of controlled attachment and to map the evolution of the coherent structures. The strength of axial vorticity was strongly dependent upon the control frequency. A semiempirical framework adopted to quantify the overall effect of control predicted a significant increase in mixing in the region close to the nozzle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Bernal LP, Roshko A (1986) Streamwise vortex structure in plane mixing layers. J Fluid Mech 170:499–525

    Article  Google Scholar 

  • Bodony DJ (2005) The prediction and understanding of jet noise. Center for Turbulence Research Annual Research Briefs 367377

  • Breidenthal R (1981) Structure in turbulent mixing layers and wakes using a chemical reaction. J Fluid Mech 109:1–24

    Article  Google Scholar 

  • Bridges J, Brown CA, (2004) Parametric testing of chevrons on single flow hot jets. In: Technical report, NASA

  • Bridges J, Wernet M, Brown C (2003) Control of jet noise through mixing enhancement. In: Technical report, NASA

  • Brown CA, Bridges J (2006) Acoustic efficiency of azimuthal modes in jet noise using chevron nozzles. AIAA paper 2006–2645

  • Brown GL, Roshko A (1974) On density effects and large structure in turbulent mixing layers. J Fluid Mech 64:775–816

    Article  Google Scholar 

  • Callender B, Gutmark E, Martens S (2005) Far-field acoustic investigation into chevron nozzle mechanisms and trends. AIAA J 43(1):87–95

    Article  Google Scholar 

  • Carr LW (1988) Progress in analysis and prediction of dynamic stall. J Aircr 25(1):6–17

    Article  Google Scholar 

  • Collis SS, Lele SK, Moser RD, Rogers MM (1994) The evolution of a plane mixing layer with spanwise nonuniform forcing. Phys Fluids 6:381

    Article  MATH  Google Scholar 

  • Crow SC, Champagne FH (1971) Orderly structure in jet turbulence. J Fluid Mech 48:547–591

    Article  Google Scholar 

  • Darabi A, Wygnanski I (2004) Active management of naturally separated flow over a solid surface. Part 1. The forced reattachment process. J Fluid Mech 510:105–129 and Part 2. The separation process. J Fluid Mech 510:131–144

  • Greenblatt D (2005) Management of vortices trailing flapped wings via separation control. AIAA paper no. 2005–2061

  • Greenblatt D (2006) Managing flap vortices via separation control. AIAA J 44(11):2755–2764

    Article  Google Scholar 

  • Greenblatt D (2007) Dual location separation control on a semispan wing. AIAA J 45(8):1848–1860

    Article  MathSciNet  Google Scholar 

  • Greenblatt D (2012) Fluidic control of a wing tip vortex. AIAA J 50(2):375–386

    Article  MathSciNet  Google Scholar 

  • Greenblatt D, Wygnanski I (2000) Control of flow separation by periodic excitation,”. Prog Aerosp Sci 36(7):487–545

    Article  Google Scholar 

  • Greenblatt D, Wygnanski I (2003) Effect of leading-edge curvature on airfoil separation control. J Aircr 40(3):473–481

    Article  Google Scholar 

  • Greenblatt D, Singh Y, Kastantin Y, Nayeri CN, Paschereit CO (2007) Active management of entrainment and streamwise vortices in an incompressible jet. Active Flow Control 95:281–292

    Article  Google Scholar 

  • Greenblatt D, Singh Y, Nayeri CN, Paschereit CO, Mohan NKD (2008) Active control of an incompressible axisymmetric jet. ASME paper no. ESDA2008-59509

  • Grinstein FF, Gutmark EJ, Parr TP, Hanson-Parr D, Obeysekare U (1996) Streamwise and spanwise vortex interaction in an axisymmetric jet. A computational and experimental study. Phys Fluids 8:1515–1524

    Article  Google Scholar 

  • Gutmark EJ, Grinstein FF (1999) Flow control with noncircular jets. Ann Rev Fluid Mech 31:239–272

    Article  Google Scholar 

  • Gutmark EJ, Schadow KC, Yu KH (1995) Mixing enhancement in supersonic free shear flows. Annu Rev Fluid Mech 27:375–417

    Article  Google Scholar 

  • Hilgers A, Boersma BJ (2001) Optimization of turbulent jet mixing. Fluid Dyn Res 29(6):345–368

    Article  Google Scholar 

  • Huang LS, Maestrello L, Bryant TD (1987) Separation control over airfoils at high angles of attack by sound emanating from the surface. AIAA paper no. 1987–1261

  • Huerre P, Monkewitz PA (1985) Absolute and convective instabilities in free shear layers. J Fluid Mech 159:151–168

    Article  MATH  MathSciNet  Google Scholar 

  • Hussain AKMF (1986) Coherent structures and turbulence. J Fluid Mech 173:303–356

    Article  Google Scholar 

  • Kamran MA, McGuirk JJ (2011) Subsonic jet mixing via active control using steady and pulsed control jets. AIAA J 49(4):712–724

    Article  Google Scholar 

  • Katz Y, Nishri B, Wygnanski I (1989) The delay of turbulent boundary layer separation by oscillatory active control. AIAA paper no. 1989–0975

  • Katz Y, Nishri B, Wygnanski I (1989) The Delay of turbulent boundary layer separation by oscillatory active control. AIAA paper no. 1989–0975

  • Kinzie K, Henderson B, Whitmire J, Abeyshinghe A (2004) Fluidic chevrons for jet noise reduction. Active 04, Williamsburg, Virginia, September 20–22, United States

  • Kinzie K, Henderson B, Whitmire J, Abeyshinghe A (2004) Fluidic chevrons for jet noise reduction. Active 04

  • Knowles K, Saddington AJ (2006) A review of jet mixing enhancement for aircraft propulsion applications. J Aerosp Eng 220:103–127

    Google Scholar 

  • Laurendeau E, Jordan P, Bonnet J, Delville J, Parnaudeau P, Lamballais E (2008) Subsonic jet noise reduction by fluidic control: the interaction region and the global effect. Phys Fluids 20:101519. doi:10.1063/1.3006424

    Article  Google Scholar 

  • Liepmann D, Gharib M (1992) The role of streamwise vorticity in the near-field entrainment of round jets. J Fluid Mech 245:643–668

    Article  Google Scholar 

  • Marble FE, Zukoski EE, Jacobs JW, Hendricks GJ, Waitz IA (1990) Shock enhancement and control of hypersonic mixing and combustion. AIAA paper no. 1990–1981

  • Mohan NKD, Greenblatt D, Nayeri CN, Paschereit CO, Nagangudy Ramamurthi P (2008) Active and passive flow control of an incompressible axisymmetric jet. P ASME turbo expo 2008

  • Müller-Vahl H, Singh Y, Greenblatt D, Nayeri CN, Paschereit CO (2010) Active control of an incompressible axisymmetric jet using zero mass-flux excitation. ICJWSF2010

  • Nishri B, Wygnanski I (1998) Effects of periodic excitation on turbulent flow separation from a flap. AIAA J 36(4):547–556

    Article  Google Scholar 

  • Papamoschou D, Rostamimonjezi S (2012) Modeling of noise reduction for turbulent jets with induced asymmetry. AIAA paper no. 2012–2158

  • Paschereit CO, Oster D, Long TS, Fiedler HE, Wygnanski I (1992) Flow visualization of interactions among large coherent structures in an axisymmetric jet. Exp Fluids 12(3):189–199

    Article  Google Scholar 

  • Paschereit CO, Wygnanski I, Fiedler HE (1995) Experimental investigation of subharmonic resonance in an axisymmetric jet. J Fluid Mech 283:365–407

    Article  Google Scholar 

  • Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44(1):1–25

    Article  Google Scholar 

  • Reynolds WC, Parekh DE, Juvet PJD, Lee MJD (2003) Bifurcating and blooming jets. Annu Rev Fluid Mech 35:295–315

    Article  MathSciNet  Google Scholar 

  • Rotta J (1972) Statistical theory of inhomogeneous turbulence, part 1. NASA TT F-14, 560

  • Schlinker RH, Simonich JC, Shannon DW, Reba RA, Colonius T, Gudmundsson K, Ladeinde F (2009) Supersonic jet noise from round and chevron nozzles: experimental studies. AIAA paper no. 2009–3257

  • Singh Y, Greenblatt D, Nayeri CN, Paschereit CO (2009) Active control of an incompressible axisymmetric jet using flaps. TSFP-6, Turbulence and Shear Flow Phenomena, Seoul, Korea

  • Tamburello AD, Amitay M (2006) Manipulation of an axisymmetric jet using continuous control jets. J Turbul 7(59):1–24

    MathSciNet  Google Scholar 

  • Tamburello DA, Amitay M (2007) Three-dimensional interactions of a free jet with a perpendicular synthetic jet. J Turbul 8(38):1–21

    Google Scholar 

  • Thomas RH, Choudhari MM, Joslin RD (2002) Flow and noise control: review and assessment of future directions. In: Technical report, NASA

  • Violato D, Scarano F (2011) Three-dimensional evolution of flow structures in transitional circular and chevron jets. Phys Fluids 23:124104

    Article  Google Scholar 

  • Waitz IA, Qiu YJ, Manning TA, Fung AKS, Elliot JK, Kerwin JM, Krasnodebski JK, O’Sullivan MN, Tew DE, Greitzer EM, Marble FE, Tan CS, Tillman TG (1997) Enhanced mixing with streamwise vorticity. Prog Aerosp Sci 33(5–6):323–351

    Article  Google Scholar 

  • Winant CD, Browand FK (1974) Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J Fluid Mech 63:237–255

    Article  Google Scholar 

  • Zaman KBMQ, Bridges JE, Huff DL (2010) Evolution from ‘tabs’ to ‘chevron technology’—a review. In: Proceedings of the 13th Asian congress of fluid mechanics, Dhaka

  • Zhang S, Schneider SP (1995) Quantitative molecular-mixing measurements in a round jet with tabs. Phys Fluids 7:1063

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for the work provided by the Deutsche Forschungsgemeinschaft (DFG), project number Pa 920/4-1. The assistance of Yogesh Singh is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanns Müller-Vahl.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller-Vahl, H., Nayeri, C.N., Paschereit, C.O. et al. Mixing enhancement of an axisymmetric jet using flaplets with zero mass-flux excitation. Exp Fluids 56, 38 (2015). https://doi.org/10.1007/s00348-014-1889-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1889-z

Keywords

Navigation