Skip to main content
Log in

Radiation exposure of patients during endourological procedures

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Considering the existing gaps in the literature regarding patient radiation dose (RD) and its associated risks, a systematic review of the literature on RD was conducted, focusing on percutaneous nephrolithotomy (PCNL), extracorporeal shock wave lithotripsy (SWL), and ureteroscopy (URS).

Methods

Two authors conducted a literature search on PubMed, Web of Science, and Google Scholar to identify studies on RD during endourological procedures. Two thousand two hundred sixty-six articles were screened. Sixty-five publications met the inclusion criteria using the PRISMA standards.

Results

RD was generally highest for PCNL, reaching levels up to 33 mSv, 28,700 mGycm2, and 430.8 mGy. This was followed by SWL, with RD reaching up to 7.32 mSv, 13,082 mGycm2, and 142 mGy. URS demonstrated lower RD, reaching up to 6.07 mSv, 8920 mGycm2, and 46.99 mGy. Surgeon experience and case load were inversely associated with RD. Strategies such as optimizing fluoroscopy settings, implementing ultrasound (US), and following the ALARA (As Low As Reasonably Achievable) principle minimized RD.

Conclusions

This is the first systematic review analyzing RD, which was generally highest during PCNL, followed by SWL and URS. There is no specific RD limit for these procedures. Implementation of strategies such as optimizing fluoroscopy settings, utilizing US, and adhering to the ALARA principle proved effective in reducing RD. However, further research is needed to explore the factors influencing RD, assess their impact on patient outcomes, and establish procedure-specific reference levels for RD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors upon reasonable request.

References

  1. Linet MS, Slovis TL, Miller DL, Kleinerman R, Lee C, Rajaraman P et al (2012) Cancer risks associated with external radiation from diagnostic imaging procedures. CA Cancer J Clin 62(2):75–100

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yecies T, Averch TD, Semins MJ (2018) Identifying and managing the risks of medical ionizing radiation in endourology. Can J Urol 25(1):9154–9160

    PubMed  Google Scholar 

  3. ICRP (2012) ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs-threshold doses for tissue reactions in a radiation protection context. Ann ICRP 41(1–2):1–322

    Google Scholar 

  4. Goldman M (1982) Ionizing radiation and its risks. West J Med 137(6):540–547

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Little MP, Azizova TV, Richardson DB, Tapio S, Bernier MO, Kreuzer M et al (2023) Ionising radiation and cardiovascular disease: systematic review and meta-analysis. BMJ 380:e072924

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boeri L, Gallioli A, De Lorenzis E, Fontana M, Palmisano F, Sampogna G et al (2020) Impact of surgical experience on radiation exposure during retrograde intrarenal surgery: a propensity-score matching analysis. Eur Urol Focus 6(1):157–163

    Article  PubMed  Google Scholar 

  7. Harrison JD, Balonov M, Bochud F, Martin C, Menzel HG, Ortiz-Lopez P et al (2021) ICRP Publication 147: use of dose quantities in radiological protection. Ann ICRP 50(1):9–82

    Article  CAS  PubMed  Google Scholar 

  8. Harrison JD, Haylock RGE, Jansen JTM, Zhang W, Wakeford R (2023) Effective doses and risks from medical diagnostic x-ray examinations for male and female patients from childhood to old age. J Radiol Prot 43(1):011518

    Article  Google Scholar 

  9. Valentin J (2007) PUBLICATION 103 - The 2007 recommendations of the international commission on radiological protection. Ann ICRP 37:1–332

    CAS  PubMed  Google Scholar 

  10. Committee NRC (1999) Evaluation of guidelines for exposures to technologically enhanced naturally occurring radioactive materials. evaluation of guidelines for exposures to technologically enhanced naturally occurring radioactive materials. National Academies Press, Washington (DC)

    Google Scholar 

  11. Jamal JE, Armenakas NA, Sosa RE, Fracchia JA (2011) Perioperative patient radiation exposure in the endoscopic removal of upper urinary tract calculi. J Endourol 25(11):1747–1751

    Article  PubMed  Google Scholar 

  12. Yecies TS, Semins MJ (2019) Radiation mitigation techniques in kidney stone management. Urol Clin North Am 46(2):265–272

    Article  PubMed  Google Scholar 

  13. Hanna L, Walmsley BH, Devenish S, Rogers A, Keoghane SR (2015) Limiting radiation exposure during percutaneous nephrolithotomy. J Endourol 29(5):526–530

    Article  PubMed  Google Scholar 

  14. McCollough CH, Bushberg JT, Fletcher JG, Eckel LJ (2015) Answers to common questions about the use and safety of CT scans. Mayo Clin Proc 90(10):1380–1392

    Article  PubMed  Google Scholar 

  15. Mc Laughlin JP (2015) Some characteristics and effects of natural radiation. Radiat Prot Dosimetry 167(1–3):2–7

    Article  CAS  PubMed  Google Scholar 

  16. Miller DT, Semins MJ (2021) Minimizing radiation dose in management of stone disease: how to achieve “ALARA.” Curr Opin Urol 31(2):115–119

    Article  PubMed  Google Scholar 

  17. Howard SA, Rosenthal MH, Qin L, Matalon SA, Bernard BD, Beard CJ et al (2018) Quantifying decreased radiation exposure from modern CT scan technology and surveillance programs of germ cell tumors. Am J Clin Oncol 41(10):949–952

    Article  PubMed  Google Scholar 

  18. Rao PN, Faulkner K, Sweeney JK, Asbury DL, Sambrook P, Blacklock NJ (1987) Radiation dose to patient and staff during percutaneous nephrostolithotomy. Br J Urol 59(6):508–512

    Article  CAS  PubMed  Google Scholar 

  19. Geterud K, Larsson A, Mattsson S (1989) Radiation dose to patients and personnel during fluoroscopy at percutaneous renal stone extraction. Acta Radiol 30(2):201–205

    Article  CAS  PubMed  Google Scholar 

  20. Hellawell GO, Cowan NC, Holt SJ, Mutch SJ (2002) A radiation perspective for treating loin pain in pregnancy by double-pigtail stents. BJU Int 90(9):801–808

    Article  CAS  PubMed  Google Scholar 

  21. Allen D, O’Brien T, Tiptaft R, Glass J (2005) Defining the learning curve for percutaneous nephrolithotomy. J Endourol 19(3):279–282

    Article  PubMed  Google Scholar 

  22. Kumari G, Kumar P, Wadhwa P, Aron M, Gupta NP, Dogra PN (2006) Radiation exposure to the patient and operating room personnel during percutaneous nephrolithotomy. Int Urol Nephrol 38(2):207–210

    Article  PubMed  Google Scholar 

  23. Safak M, Olgar T, Bor D, Berkmen G, Gogus C (2009) Radiation doses of patients and urologists during percutaneous nephrolithotomy. J Radiol Prot 29(3):409–415

    Article  CAS  PubMed  Google Scholar 

  24. Mancini JG, Raymundo EM, Lipkin M, Zilberman D, Yong D, Banez LL et al (2010) Factors affecting patient radiation exposure during percutaneous nephrolithotomy. J Urol 184(6):2373–2377

    Article  PubMed  Google Scholar 

  25. Hristova-Popova J, Saltirov I, Vassileva J (2011) Exposure to patient during interventional endourological procedures. Radiat Prot Dosimetry 147(1–2):114–117

    Article  CAS  PubMed  Google Scholar 

  26. Lipkin ME, Mancini JG, Zilberman DE, Raymundo ME, Yong D, Ferrandino MN et al (2011) Reduced radiation exposure with the use of an air retrograde pyelogram during fluoroscopic access for percutaneous nephrolithotomy. J Endourol 25(4):563–567

    Article  PubMed  Google Scholar 

  27. Lantz AG, O’Malley P, Ordon M, Lee JY (2014) Assessing radiation exposure during endoscopic-guided percutaneous nephrolithotomy. Can Urol Assoc J 8(9–10):347–351

    Article  PubMed  PubMed Central  Google Scholar 

  28. Torrecilla Ortiz C, Meza Martinez AI, Vicens Morton AJ, Vila Reyes H, Colom Feixas S, Suarez Novo JF et al (2014) Obesity in percutaneous nephrolithotomy. Is body mass index really important? Urology. 84(3):538–43

    Article  PubMed  Google Scholar 

  29. Ristau BT, Dudley AG, Casella DP, Dwyer ME, Fox JA, Cannon GM et al (2015) Tracking of radiation exposure in pediatric stone patients: the time is now. J Pediatr Urol. 11(6):339e1-339e5

    Article  Google Scholar 

  30. Canales BK, Sinclair L, Kang D, Mench AM, Arreola M, Bird VG (2016) Changing default fluoroscopy equipment settings decreases entrance skin dose in patients. J Urol 195(4 Pt 1):992–997

    Article  PubMed  Google Scholar 

  31. Chi T, Masic S, Li J, Usawachintachit M (2016) Ultrasound guidance for renal tract access and dilation reduces radiation exposure during percutaneous nephrolithotomy. Adv Urol 2016:3840697

    Article  PubMed  PubMed Central  Google Scholar 

  32. Demirci A, Raif Karabacak O, Yalcinkaya F, Yigitbasi O, Aktas C (2016) Radiation exposure of patient and surgeon in minimally invasive kidney stone surgery. Prog Urol 26(6):353–359

    Article  CAS  PubMed  Google Scholar 

  33. Dudley AG, Dwyer ME, Fox JA, Dwyer JT, Dangle P, Ristau BT et al (2016) Prospective assessment of radiation in pediatric urology: the pediatric urology radiation safety evaluation study. J Urol 196(1):202–206

    Article  CAS  PubMed  Google Scholar 

  34. Usawachintachit M, Masic S, Chang HC, Allen IE, Chi T (2016) Ultrasound guidance to assist percutaneous nephrolithotomy reduces radiation exposure in obese patients. Urology 98:32–38

    Article  PubMed  Google Scholar 

  35. Guiu-Souto J, Otero-Martinez C, Perez-Fentes D, Fernandez-Baltar C, Sanchez-Garcia JF, Garcia-Freire C et al (2017) Characterizing endourologist learning curve during percutaneous nephrolithotomy: implications on occupational dose and patients. J Radiol Prot 37(4):N49–N54

    Article  PubMed  Google Scholar 

  36. Giordano C, Marcello G, Barbattini L, Gobbi R (2018) Local levels of patient radiation exposure in a urology operating room in Italy. Radiat Prot Dosimetry 179(4):327–332

    Article  CAS  PubMed  Google Scholar 

  37. Fahmy A, Elgebaly O, Youssif M (2020) Fluoroscopic imaging optimization in children during percutaneous nephrolithotrispy. J Pediatr Urol 16(5):625e1-625e6

    Article  Google Scholar 

  38. Simson N, Stonier T, Suleyman N, Hendry J, Salib M, Peacock J et al (2020) Defining a national reference level for intraoperative radiation exposure in urological procedures: FLASH, a retrospective multicentre UK study. BJU Int 125(2):292–298

    Article  PubMed  Google Scholar 

  39. Vassileva J, Zagorska A, Basic D, Karagiannis A, Petkova K, Sabuncu K et al (2020) Radiation exposure of patients during endourological procedures: IAEA-SEGUR study. J Radiol Prot 40(4):1390

    Article  Google Scholar 

  40. Amirhasani S, Daneshdoost R, Mousavibahar S, Ghazikhanlou-Sani K, Raeisi R (2021) Reduction of radiation dose received by surgeons and patients during percutaneous nephrolithotomy: a new shielding method. Urol J 18(3):271–276

    PubMed  Google Scholar 

  41. Bayram Ilikan G, Karabulut B, Tiryaki HT (2021) Can ultrasound guidance reduce radiation exposure significantly in percutaneous nephrolithotomy in pediatric patients? Urolithiasis 49(2):173–180

    Article  PubMed  Google Scholar 

  42. Zampini AM, Bamberger JN, Gupta K, Gallante B, Atallah WM, Gupta M (2021) Factors affecting patient radiation exposure during prone and supine percutaneous nephrolithotomy. J Endourol 35(10):1448–1453

    Article  PubMed  Google Scholar 

  43. Cheng G, Campbell T, Feng C, Quarrier S, Jain R (2022) Low-dose fluoroscopy technique drastically decreases patient radiation exposure during percutaneous nephrolithotomy. Urolithiasis 51(1):11

    Article  PubMed  Google Scholar 

  44. Hosier GW, Hakam N, Hamouche F, Cortez X, Charondo L, Yang H et al (2023) Ultrasound-only percutaneous nephrolithotomy is safe and effective compared to fluoroscopy-directed percutaneous nephrolithotomy. J Endourol 37(6):634–641

    Article  PubMed  Google Scholar 

  45. Falahatkar S, Haghjoo P, Esmaeili S, Kazemnezhad E (2022) Fluoroscopy screening time and radiation dose during complete supine percutaneous nephrolithotomy. World J Urol 40(11):2601–2607

    Article  PubMed  Google Scholar 

  46. Taghavi K, Kusel A, Webb N, McCahy P, Badawy M, Ditchfield M (2023) The burden of radiation exposure in children requiring percutaneous nephrolithotomy. J Pediatr Urol 19(5):559e1-559e7

    Article  Google Scholar 

  47. McCullough D (1986) Bowman Gray School of Medicine

  48. Newman R, Madorsky W, Finlayson BF (1986) Radiation exposure during ESWL. Southwestern Section, American Urological Association, Inc., New York

    Google Scholar 

  49. Saunders JE, Earle DJ, Porter JC, Coleman AJ (1986) Radiation dose to patients from extracorporeal shock wave lithotripsy. Br Med J (Clin Res Ed) 292(6525):958

    Article  CAS  PubMed  Google Scholar 

  50. Bush WH, Jones D, Gibbons RP (1987) Radiation dose to patient and personnel during extracorporeal shock wave lithotripsy. J Urol 138(4):716–719

    Article  CAS  PubMed  Google Scholar 

  51. Carter HB, Naslund EB, Riehle RA Jr (1987) Variables influencing radiation exposure during extracorporeal shock wave lithotripsy. Review of 298 treatments. Urology 30(6):546–550

    Article  CAS  PubMed  Google Scholar 

  52. Glaze S, LeBlanc AD, Bushong SC, Griffith DP (1987) Patient and personnel exposure during extracorporeal lithotripsy. Health Phys 53(6):623–629

    Article  CAS  PubMed  Google Scholar 

  53. Jocham D, Brandl H, Chaussy C, Schmiedt E (1987) Treatment of nephrolithiasis. In: Gravenstein JS, Peter K (eds) Extracorporeal shock wave lithotripsy technical and clinical aspects. Butterworths, Stoneham

    Google Scholar 

  54. Lin PJ, Hrejsa AF (1987) Patient exposure and radiation environment of an extracorporeal shock wave lithotriptor system. J Urol 138(4):712–715

    Article  CAS  PubMed  Google Scholar 

  55. Van Swearingen FL, McCullough DL, Dyer R, Appel B (1987) Radiation exposure to patients during extracorporeal shock wave lithotripsy. J Urol 138(1):18–20

    Article  PubMed  Google Scholar 

  56. Griffith DP, Gleeson MJ, Politis G, Glaze S (1989) Effectiveness of radiation control program for Dornier HM3 lithotriptor. Urology 33(1):20–25

    Article  CAS  PubMed  Google Scholar 

  57. Huda W, Bews J, Saydak AP (1989) Radiation doses in extracorporeal shock wave lithotripsy. Br J Radiol 62(742):921–926

    Article  CAS  PubMed  Google Scholar 

  58. Chen WC, Lee YH, Chen MT, Huang JK, Chang LS (1991) Factors influencing radiation exposure during the extracorporeal shock wave lithotripsy. Scand J Urol Nephrol 25(3):223–226

    Article  CAS  PubMed  Google Scholar 

  59. Baldock C, Greener AG, Batchelor S (1992) Radiation dose to patients and staff from Storz Modulith SL20 lithotripter. J Stone Dis 4(3):216–219

    CAS  PubMed  Google Scholar 

  60. Kostakopoulos A, Picramenos D, Deliveliotis C, Christofis I, Koutsokalis G (1995) Radiation exposure to patients during extracorporeal shock wave lithotripsy. In 13th World Congress on Endourology and SWL, Jerusalem, Israel

  61. Ugarte RR, Cass AS (1998) Radiation awareness program for extracorporeal shockwave lithotripsy using Medstone lithotripters. J Endourol 12(3):223–227

    Article  CAS  PubMed  Google Scholar 

  62. Macnamara A, Hoskins P (1999) Patient radiation dose during lithotripsy. Br J Radiol 72(857):495–498

    Article  CAS  PubMed  Google Scholar 

  63. Perisinakis K, Damilakis J, Anezinis P, Tzagaraki I, Varveris H, Cranidis A et al (2002) Assessment of patient effective radiation dose and associated radiogenic risk from extracorporeal shock-wave lithotripsy. Health Phys 83(6):847–853

    Article  CAS  PubMed  Google Scholar 

  64. Sandilos P, Tsalafoutas I, Koutsokalis G, Karaiskos P, Georgiou E, Yakoumakis E et al (2006) Radiation doses to patients from extracorporeal shock wave lithotripsy. Health Phys 90(6):583–587

    Article  CAS  PubMed  Google Scholar 

  65. Sulieman A, Ibrahim AA, Osman H, Yousef M (2010) Radiation dose assessment and risk estimation during extracorporeal shock wave lithotripsy. In: Tenth Radiation Physics & Protection Conference; Cairo, Egypt, p. 303–309

  66. Bushara NA, Sulieman A, Halato MA, Suliman II (2012) Measurement of radiation dose during extracorpearal shockwave lithotripsy procedure. AJMRR 1(1):1–5

    Google Scholar 

  67. Rebuck DA, Coleman S, Chen JF, Casey JT, Perry KT, Nadler RB (2012) Extracorporeal shockwave lithotripsy versus ureteroscopy: a comparison of intraoperative radiation exposure during the management of nephrolithiasis. J Endourol 26(6):597–601

    Article  PubMed  Google Scholar 

  68. Pricop C, Maier A, Negru D, Malau O, Orsolya M, Radavoi D et al (2014) Extracorporeal shock waves lithotripsy versus retrograde ureteroscopy: is radiation exposure a criterion when we choose which modern treatment to apply for ureteric stones? Bosn J Basic Med Sci 14(4):254–258

    PubMed  PubMed Central  Google Scholar 

  69. Abid N, Ravier E, Promeyrat X, Codas R, Fehri HF, Crouzet S et al (2015) Decreased radiation exposure and increased efficacy in extracorporeal lithotripsy using a new ultrasound stone locking system. J Endourol 29(11):1263–1269

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sulieman A, Barakat H, Zailae A, Abuderman A, Theodorou K (2015) Measurement of patient radiation doses in certain urography procedures. Radiat Prot Dosimetry 165(1–4):397–401

    Article  CAS  PubMed  Google Scholar 

  71. Smith HE, Bryant DA, KooNg J, Chapman RA, Lewis G (2016) Extracorporeal shockwave lithotripsy without radiation: ultrasound localization is as effective as fluoroscopy. Urol Ann 8(4):454–457

    Article  PubMed  PubMed Central  Google Scholar 

  72. Goren MR, Goren V, Ozer C (2017) Ultrasound-guided shockwave lithotripsy reduces radiation exposure and has better outcomes for pediatric cystine stones. Urol Int 98(4):429–435

    Article  PubMed  Google Scholar 

  73. Hassanpour N, Panahi F, Naserpour F, Karami V, Fatahi Asl J, Gholami M (2018) A study on radiation dose received by patients during extracorporeal shock wave lithotripsy. Arch Iran Med 21(12):585–588

    PubMed  Google Scholar 

  74. Hadid-Beurrier L, Dabli D, Royer B, Demonchy M, Le Roy J (2021) Diagnostic reference levels during fluoroscopically guided interventions using mobile C-arms in operating rooms: a national multicentric survey. Phys Med 86:91–97

    Article  PubMed  Google Scholar 

  75. HsiI RS, Harper JD (2013) Fluoroless ureteroscopy: zero-dose fluoroscopy during ureteroscopic treatment of urinary-tract calculi. J Endourol 27(4):432–437

    Article  Google Scholar 

  76. Hsi RS, Zamora DA, Kanal KM, Harper JD (2013) Severe obesity is associated with 3-fold higher radiation dose rate during ureteroscopy. Urology 82(4):780–785

    Article  PubMed  Google Scholar 

  77. Kokorowski PJ, Chow JS, Strauss KJ, Pennison M, Tan W, Cilento B et al (2013) Prospective systematic intervention to reduce patient exposure to radiation during pediatric ureteroscopy. J Urol 190(4 Suppl):1474–1478

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hein S, Schoenthaler M, Wilhelm K, Schlager D, Vach W, Wetterauer U et al (2017) Ultralow radiation exposure during flexible ureteroscopy in patients with nephrolithiasis-how far can we go? Urology 108:34–39

    Article  PubMed  Google Scholar 

  79. Hadjipavlou M, Lam V, Seth J, Anjum F, Sriprasad S (2018) Radiation exposure during ureterorenoscopy and laser lithotripsy: an analysis of stone characteristics. Urol Int 100(2):198–202

    Article  CAS  PubMed  Google Scholar 

  80. Kokorowski PJ, Chow JS, Cilento BG Jr, Kim DS, Kurtz MP, Logvinenko T et al (2018) The effect of surgeon versus technologist control of fluoroscopy on radiation exposure during pediatric ureteroscopy: a randomized trial. J Pediatr Urol 14(4):334e1-334e8

    Article  Google Scholar 

  81. Danilovic A, Nunes E, Lipkin ME, Ferreira T, Torricelli FCM, Marchini GS et al (2019) Low dose fluoroscopy during ureteroscopy does not compromise surgical outcomes. J Endourol 33(7):527–532

    Article  PubMed  Google Scholar 

  82. Lee JJ, Venna AM, McCarthy I, Cilento BG, Demers MG, MacDougall RD et al (2021) Flat panel detector c-arms are associated with dramatically reduced radiation exposure during ureteroscopy and produce superior images. J Endourol 35(6):789–794

    Article  PubMed  Google Scholar 

  83. Tzou DT, Villaneda M, Zetumer S, Reliford-Titus S, Taguchi K, Usawachintachit M et al (2018) Renal tract dilation is a significant source of radiation exposure during percutaneous nephrolithotomy: results from the registry for stones of the kidney and ureter (RESKU). Urol J 199(4S):724–725

    Google Scholar 

  84. Chang TH, Lin WR, Tsai WK, Chiang PK, Chen M, Tseng JS et al (2020) Comparison of ultrasound-assisted and pure fluoroscopy-guided extracorporeal shockwave lithotripsy for renal stones. BMC Urol 20(1):183

    Article  PubMed  PubMed Central  Google Scholar 

  85. Grabsky A, Tsaturyan A, Musheghyan L, Minasyan G, Khachatryan Y, Shadyan G et al (2021) Effectiveness of ultrasound-guided shockwave lithotripsy and predictors of its success rate in pediatric population: a report from a national reference center. J Pediatr Urol 17(1):78e1-78e7

    Article  Google Scholar 

  86. Logarakis NF, Jewett MA, Luymes J, Honey RJ (2000) Variation in clinical outcome following shock wave lithotripsy. J Urol 163(3):721–725

    Article  CAS  PubMed  Google Scholar 

  87. ICRP (1977) ICRP Publication 26: Recommendations of the ICRP. Ann ICRP 1(3)

  88. Greene DJ, Tenggadjaja CF, Bowman RJ, Agarwal G, Ebrahimi KY, Baldwin DD (2011) Comparison of a reduced radiation fluoroscopy protocol to conventional fluoroscopy during uncomplicated ureteroscopy. Urology 78(2):286–290

    Article  PubMed  Google Scholar 

  89. Skolarikos A, Neisius A, Petřík A, Somani B, Thomas K, Gambaro G (2022) EAU Guidelines on Urolithiasis. EAU Guidelines Office, Arnhem

    Google Scholar 

  90. Assimos D, Krambeck A, Miller NL, Monga M, Murad MH, Nelson CP et al (2016) Surgical management of stones: american urological association/endourological society guideline. PART II J Urol 196(4):1161–1169

    Article  PubMed  Google Scholar 

  91. Inoue T, Okada S, Hamamoto S, Fujisawa M (2021) Retrograde intrarenal surgery: past, present, and future. Investig Clin Urol 62(2):121–135

    Article  PubMed  PubMed Central  Google Scholar 

  92. Setterfield J, Watterson J, Playfair M, Lavallee LT, Roberts M, Blew B et al (2016) Should surgeons control fluoroscopy during urology procedures? Can Urol Assoc J 10(11–12):398–402

    Article  PubMed  PubMed Central  Google Scholar 

  93. Elkoushy MA, Morehouse DD, Anidjar M, Elhilali MM, Andonian S (2012) Impact of radiological technologists on the outcome of shock wave lithotripsy. Urology 79(4):777–780

    Article  PubMed  Google Scholar 

  94. Ayoub EM, Bourgi A, Alsouki J, Merhej S, Conort P (2021) Fluoroless endourological surgery for high burden renal and proximal ureteric stones: a safe technique for experienced surgeons. Arab J Urol 19(4):438–444

    Article  PubMed  PubMed Central  Google Scholar 

  95. Peng L, Wang W, Gao X, Di X, Luo D (2021) Fluoroless versus conventional ureteroscopy for urinary stones: a systematic review and meta-analysis. Minerva Urol Nephrol 73(3):299–308

    Article  PubMed  Google Scholar 

  96. Van Besien J, Uvin P, Hermie I, Tailly T, Merckx L (2017) Ultrasonography is not inferior to fluoroscopy to guide extracorporeal shock waves during treatment of renal and upper ureteric calculi: a randomized prospective study. Biomed Res Int 2017:7802672

    PubMed  PubMed Central  Google Scholar 

  97. Emiliani E, Kanashiro A, Chi T, Perez-Fentes DA, Manzo BO, Angerri O et al (2020) Fluoroless endourological surgery for stone disease: a review of the literature-tips and tricks. Curr Urol Rep 21(7):27

    Article  CAS  PubMed  Google Scholar 

  98. Emiliani E, Motta GL, Llorens E, Quiroz Y, Kanashiro AK, Angerri O et al (2019) Totally fluoroless retrograde intrarenal surgery technique in prestented patients: tips and tricks. J Pediatr Urol 15(5):570–573

    Article  CAS  PubMed  Google Scholar 

  99. Kirac M, Ergin G, Kibar Y, Kopru B, Biri H (2018) The efficacy of ureteroscopy without fluoroscopy for ureteral and renal stones in pediatric patients. J Endourol 32(2):100–105

    Article  PubMed  Google Scholar 

  100. Manzo BO, Lozada E, Manzo G, Sanchez HM, Gomez F, Figueroa A et al (2019) Radiation-free flexible ureteroscopy for kidney stone treatment. Arab J Urol 17(3):200–205

    Article  PubMed  PubMed Central  Google Scholar 

  101. Nouralizadeh A, Sharifiaghdas F, Pakmanesh H, Basiri A, Radfar MH, Soltani MH et al (2018) Fluoroscopy-free ultrasonography-guided percutaneous nephrolithotomy in pediatric patients: a single-center experience. World J Urol 36(4):667–671

    Article  PubMed  Google Scholar 

  102. El-Shaer W, Kandeel W, Abdel-Lateef S, Torky A, Elshaer A (2019) Complete ultrasound-guided percutaneous nephrolithotomy in prone and supine positions: a randomized controlled study. Urology 128:31–37

    Article  PubMed  Google Scholar 

  103. ICRP (1991) ICRP Publication 60: 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP 21(1–3):1–202

    Google Scholar 

  104. ICRP (2007) The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 37(2–4):1–332

    Google Scholar 

  105. Smith DL, Heldt JP, Richards GD, Agarwal G, Brisbane WG, Chen CJ et al (2013) Radiation exposure during continuous and pulsed fluoroscopy. J Endourol 27(3):384–388

    Article  PubMed  Google Scholar 

  106. Chen R, Joo EH, Baas C, Hartman J, Amasyali AS, Shete K et al (2024) Reducing hand radiation during renal access for percutaneous nephrolithotomy: a comparison of radiation reduction techniques. Urolithiasis 52(1):27

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Vincent De Coninck: Protocol/project development, Data collection or management, Data analysis, Manuscript writing/editing. Xavier Mortiers: Data collection or management, Data analysis, Manuscript writing/editing. Laura Hendrickx: Data collection or management, Data analysis. Stefan De Wachter: Manuscript writing/editing. Olivier Traxer: Manuscript writing/editing. Etienne Xavier Keller: Data analysis, Manuscript writing/editing.

Corresponding author

Correspondence to Vincent De Coninck.

Ethics declarations

Conflict of interest

Vincent De Coninck is a speaker and/or consultant for BD, Coloplast, and Karl Storz, and has no specific conflicts relevant to this study. Olivier Traxer is a consultant for Coloplast, Karl Storz, Rocamed, Quanta Systems, Ambu, Boston Scientific, and IPG Medical, and has no specific conflicts relevant to this study. Etienne Xavier Keller is a speaker and/or consultant for Coloplast, Olympus, Boston Scientific, Recordati, Debiopharm and Alnylam, and has no specific conflicts of interest relevant to this work. All other authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 56 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Coninck, V., Mortiers, X., Hendrickx, L. et al. Radiation exposure of patients during endourological procedures. World J Urol 42, 266 (2024). https://doi.org/10.1007/s00345-024-04953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00345-024-04953-y

Keywords

Navigation