Skip to main content
Log in

Incorporating PHI in decision making: external validation of the Rotterdam risk calculators for detection of prostate cancer

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

External validation of existing risk calculators (RC) to assess the individualized risk of detecting prostate cancer (PCa) in prostate biopsies is needed to determine their clinical usefulness. The objective was to externally validate the Rotterdam Prostate Cancer RCs 3 and 4 (RPCRC-3/4) and that incorporating PHI (RPCRC–PHI) in a contemporary Spanish cohort.

Methods

Multicenter prospective study that included patients suspicious of harboring PCa. Men who attended the urology consultation were tested for PHI before prostate biopsy. To evaluate the performance of the prediction models: discrimination (receiver operating characteristic (ROC) curves), calibration and net benefit [decision curve analysis (DCA)] were calculated. These analyses were carried out for detection of any PCa and clinically significant (cs)PCa, defined as ISUP grade ≥ 2.

Results

Among the 559 men included, 337 (60.28%) and 194 (34.7%) were diagnosed of PCa and csPCa, respectively. RPCRC–PHI had the best discrimination ability for detection of PCa and csPCa with AUCs of 0.85 (95%CI 0.82–0.88) and 0.82 (95%CI 0.78–0.85), respectively. Calibration plots showed that RPCRC-3/4 underestimates the risk of detecting PCa showing the need for recalibration. In DCA, RPCRC–PHI shows the highest net benefit compared to biopsy all men.

Conclusions

The RPCRC–PHI performed properly in a contemporary clinical setting, especially for prediction of csPCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Available on demand.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Hugosson J, Roobol MJ, Månsson M et al (2019) A 16-yr follow-up of the european randomized study of screening for prostate cancer. Eur Urol 76(1):43–51. https://doi.org/10.1016/j.eururo.2019.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schröder FH, Hugosson J, Carlsson S et al (2012) Screening for prostate cancer decreases the risk of developing metastatic disease: findings from the European randomized study of screening for prostate cancer (ERSPC). Eur Urol 62(5):745–752. https://doi.org/10.1016/j.eururo.2012.05.068

    Article  PubMed  Google Scholar 

  4. Loeb S, Bjurlin MA, Nicholson J et al (2014) Overdiagnosis and overtreatment of prostate cancer. Eur Urol 65(6):1046–1055. https://doi.org/10.1016/j.eururo.2013.12.062

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arnsrud Godtman R, Holmberg E, Lilja H, Stranne J, Hugosson J (2015) Opportunistic testing versus organized prostate-specific antigen screening: outcome after 18 years in the Göteborg randomized population-based prostate cancer screening trial. Eur Urol 68(3):354–360. https://doi.org/10.1016/j.eururo.2014.12.006

    Article  PubMed  Google Scholar 

  6. Roobol MJ (2018) Screening for prostate cancer: are organized screening programs necessary? Transl Androl Urol 7(1):4–11. https://doi.org/10.21037/tau.2017.12.10

    Article  PubMed  PubMed Central  Google Scholar 

  7. Roobol MJ, van Vugt HA, Loeb S et al (2012) Prediction of prostate cancer risk: the role of prostate volume and digital rectal examination in the ERSPC risk calculators. Eur Urol 61(3):577–583. https://doi.org/10.1016/j.eururo.2011.11.012

    Article  PubMed  Google Scholar 

  8. Roobol MJ, Vedder MM, Nieboer D et al (2015) Comparison of two prostate cancer risk calculators that include the prostate health index. Eur Urol Focus 1(2):185–190. https://doi.org/10.1016/j.euf.2015.06.004

    Article  PubMed  Google Scholar 

  9. Semjonow A, Köpke T, Eltze E, Pepping-Schefers B, Bürgel H, Darte C (2010) Pre-analytical in-vitro stability of [-2]proPSA in blood and serum. Clin Biochem 43(10–11):926–928. https://doi.org/10.1016/j.clinbiochem.2010.04.062

    Article  CAS  PubMed  Google Scholar 

  10. Rius Bilbao L, Valladares Gomez C, Aguirre Larracoechea U et al (2023) Do PHI and PHI density improve detection of clinically significant prostate cancer only in the PSA gray zone? Clin Chim Acta 542:117270. https://doi.org/10.1016/j.cca.2023.117270

    Article  CAS  PubMed  Google Scholar 

  11. Schröder F, Kattan MW (2008) The comparability of models for predicting the risk of a positive prostate biopsy with prostate-specific antigen alone: a systematic review. Eur Urol 54(2):274–290. https://doi.org/10.1016/j.eururo.2008.05.022

    Article  PubMed  Google Scholar 

  12. Gayet M, Mannaerts CK, Nieboer D et al (2018) Prediction of prostate cancer: external validation of the erspc risk calculator in a contemporary dutch clinical cohort. Eur Urol Focus 4(2):228–234. https://doi.org/10.1016/j.euf.2016.07.007

    Article  PubMed  Google Scholar 

  13. Pereira-Azevedo N, Verbeek JFM, Nieboer D, Bangma CH, Roobol MJ (2018) Head-to-head comparison of prostate cancer risk calculators predicting biopsy outcome. Transl Androl Urol 7(1):18–26. https://doi.org/10.21037/tau.2017.12.21

    Article  PubMed  PubMed Central  Google Scholar 

  14. Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW (2019) Topic Group ‘evaluating diagnostic tests and prediction models of the STRATOS initiative calibration: the achilles heel of predictive analytics. BMC Med 17(1):230. https://doi.org/10.1186/s12916-019-1466-7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hagens MJ, Stelwagen PJ, Veerman H et al (2023) External validation of the rotterdam prostate cancer risk calculator within a high-risk Dutch clinical cohort. World J Urol 41(1):13–18. https://doi.org/10.1007/s00345-022-04185-y

    Article  PubMed  Google Scholar 

  16. Agnello L, Vidali M, Giglio RV et al (2022) Prostate health index (PHI) as a reliable biomarker for prostate cancer: a systematic review and meta-analysis. Clin Chem Lab Med. 60(8):1261–1277. https://doi.org/10.1515/cclm-2022-0354

    Article  CAS  PubMed  Google Scholar 

  17. Foley RW, Maweni RM, Gorman L et al (2016) European randomised study of screening for prostate cancer (ERSPC) risk calculators significantly outperform the prostate cancer prevention trial (PCPT) 2.0 in the prediction of prostate cancer: a multi-institutional study. BJU Int 118(5):706–713. https://doi.org/10.1111/bju.13437

    Article  PubMed  Google Scholar 

  18. Loeb S, Shin SS, Broyles DL et al (2017) Prostate Health Index improves multivariable risk prediction of aggressive prostate cancer. BJU Int 120(1):61–68. https://doi.org/10.1111/bju.13676

    Article  CAS  PubMed  Google Scholar 

  19. Mottet N, van den Bergh RCN, Briers E et al (2021) Guidelines on prostate cancer-2020 update part 1: screening diagnosis, and local treatment with curative intent. Eur Urol. 79(2):243–262. https://doi.org/10.1016/j.eururo.2020.09.042

    Article  CAS  PubMed  Google Scholar 

  20. Schoots IG, Padhani AR (2020) Personalizing prostate cancer diagnosis with multivariate risk prediction tools: how should prostate MRI be incorporated? World J Urol 38(3):531–545. https://doi.org/10.1007/s00345-019-02899-0

    Article  PubMed  Google Scholar 

  21. Rouvière O, Souchon R, Melodelima C (2018) Pitfalls in interpreting positive and negative predictive values: application to prostate multiparametric magnetic resonance imaging. Diagn Interv Imaging 99(9):515–518. https://doi.org/10.1016/j.diii.2018.07.008

    Article  PubMed  Google Scholar 

  22. Remmers S, Kasivisvanathan V, Verbeek JFM, Moore CM, Roobol MJ, ERSPC Rotterdam Study Group PRECISION Investigators Group (2021) Reducing biopsies and magnetic resonance imaging scans during the diagnostic pathway of prostate cancer applying the rotterdam prostate cancer risk calculator to the precision trial data. Eur Urol Open Sci. 36(1):8. https://doi.org/10.1016/j.euros.2021.11.002

    Article  Google Scholar 

  23. Davik P, Remmers S, Elschot M, Roobol MJ, Bathen TF, Bertilsson H (2022) Reducing prostate biopsies and magnetic resonance imaging with prostate cancer risk stratification. BJUI Compass 3(5):344–353. https://doi.org/10.1002/bco2.146

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim L, Boxall N, George A et al (2020) Clinical utility and cost modelling of the phi test to triage referrals into image-based diagnostic services for suspected prostate cancer: the PRIM (Phi to RefIne Mri) study. BMC Med 18(1):95. https://doi.org/10.1186/s12916-020-01548-3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moldovan PC, Van den Broeck T, Sylvester R et al (2017) What Is the negative predictive value of multiparametric magnetic resonance imaging in excluding prostate cancer at biopsy? A systematic review and meta-analysis from the European association of urology prostate cancer guidelines panel. Eur Urol 72(2):250–266. https://doi.org/10.1016/j.eururo.2017.02.026

    Article  PubMed  Google Scholar 

  26. Mo LC, Zhang XJ, Zheng HH et al (2022) Development of a novel nomogram for predicting clinically significant prostate cancer with the prostate health index and multiparametric MRI. Front Oncol 12:1068893. https://doi.org/10.3389/fonc.2022.1068893

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhou Y, Fu Q, Shao Z et al (2023) Nomograms combining PHI and PI-RADS in detecting prostate cancer: a multicenter prospective study. J Clin Med. 12(1):339. https://doi.org/10.3390/jcm12010339

    Article  PubMed  PubMed Central  Google Scholar 

  28. Van Poppel H, Hogenhout R, Albers P, van den Bergh RCN, Barentsz JO, Roobol MJ (2021) A European model for an organised risk-stratified early detection programme for prostate cancer. Eur Urol Oncol 4(5):731–739. https://doi.org/10.1016/j.euo.2021.06.006

    Article  PubMed  Google Scholar 

Download references

Funding

The Basque Foundation for Health Innovation and Research (BIOEF) from the Health Department of the Basque Government granted this project with 32.850€. Identification code: 2016111083.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

L Rius: Project development, data collection, data management, manuscript writing, C Valladares: Project development, data management, writing editing, U Aguirre: Project development, data analysis, writing editing, S Remmers: Writing editing, JG Pereira: Data collection, P Arredondo: Data collection, LF Urdaneta: Data collection, V Escobal: Data collection, JP Sanz-Jaka: Data collection, A Recio: Data collection, J Mar: Project development, C Mar: Project development, writing editing.

Corresponding author

Correspondence to Leire Rius Bilbao.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and informed consent

The study was approved by the ethics and research committee of the coordinating center and all participants included in the study gave their written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The members of the Phi Basque Study Group are Appendix section.

Appendix: Phi Basque Study Group

Appendix: Phi Basque Study Group

Leire Rius Bilbao Department of Urology, Barrualde-Galdakao Integrated Health Organisation, Osakidetza Basque Health Service; Biocruces Bizkaia Health Research Institute; Carmen Valladares Gomez Department of Clinical Laboratory Medicine, Ezkerraldea-Enkarterri-Cruces Integrated Health Organisation, Osakidetza Basque Health Service; Biocruces Bizkaia Health Research Institute; Urko Aguirre Larracoechea Research Unit, Barrualde-Galdakao Integrated Health Organisation, Osakidetza Basque Health Service; Kronikgune Institute for Health Services Research; Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS); Jose Gregorio Pereira Arias Department of Urology, IMQ Zorrotzaurre Hospital; Pablo Arredondo Calvo Department of Urology, Barrualde-Galdakao Integrated Health Organisation, Osakidetza Basque Health Service; Luis Felipe Urdaneta Salegui Department of Urology, IMQ Zorrotzaurre Hospital; Victor Escobal Tamayo Department of Urology, Barakaldo-Sestao Integrated Health Organisation, Osakidetza Basque Health Service; Juan Pablo Sanz Jaka Department of Urology, Donostialdea Integrated Health Organisation, Osakidetza Basque Health Service; Adrian Recio Ayesa Department of Urology, Uribe Integrated Health Organisation Osakidetza Basque Health Service; Javier Mar Medina Research Unit, Debagoiena Integrated Health Organisation, Osakidetza Basque Health Service; Biodonostia Health Research Institute; Kronikgune Institute for Health Services Research; Carmen Mar Medina Department of Clinical Laboratory Medicine, Barrualde-Galdakao Integrated Health Organisation, Osakidetza Basque Health Service; Biocruces Bizkaia Health Research Institute.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rius Bilbao, L., Aguirre Larracoechea, U., Valladares Gomez, C. et al. Incorporating PHI in decision making: external validation of the Rotterdam risk calculators for detection of prostate cancer. World J Urol 42, 141 (2024). https://doi.org/10.1007/s00345-024-04833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00345-024-04833-5

Keywords

Navigation