Skip to main content
Log in

Generated temperatures and thermal laser damage during upper tract endourological procedures using the holmium: yttrium–aluminum-garnet (Ho:YAG) laser: a systematic review of experimental studies

  • Invited Review
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

To perform a review on the latest evidence related to generated temperatures during Ho:YAG laser use, and present different tools to maintain decreased values, and minimize complication rates during endourological procedures.

Methods

We performed a literature search using PubMed, Scopus, EMBASE, and Cochrane Central Register of Controlled Trials-CENTRAL, restricted to original English-written articles, including animal, artificial model, and human studies. Different keywords were URS, RIRS, ureteroscopy, percutaneous, PCNL, and laser.

Results

Thermal dose (t43) is an acceptable tool to assess possible thermal damage using the generated temperature and the time of laser exposure. A t43 value of more than 120 min leads to a high risk of thermal tissue injury and at temperatures higher than 43 °C Ho:YAG laser use becomes hazardous due to an exponentially increased cytotoxic effect. Using open continuous flow, or chilled irrigation, temperatures remain lower than 45 °C. By utilizing high-power (> 40 W) or shorter laser pulse, temperatures rise above the accepted threshold, but adding a ureteral access sheath (UAS) helps to maintain acceptable values.

Conclusions

Open irrigation systems, chilled irrigation, UASs, laser power < 40 W, and shorter on/off laser activation intervals help to keep intrarenal temperatures at accepted values during URS and PCNL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Herrmann TR, Liatsikos EN, Nagele U, Traxer O, Merseburger AS (2012) EAU guidelines on laser technologies. Eur Urol 61(4):783–795. https://doi.org/10.1016/j.eururo.2012.01.010

    Article  PubMed  Google Scholar 

  2. Schmidt-Kloiber H, Reichel E, Schöffmann H (1985) Laserinduced shock-wave lithotripsy (LISL). Biomed Tech (Berl) 30(7–8):173–181. https://doi.org/10.1515/bmte.1985.30.7-8.173

    Article  CAS  Google Scholar 

  3. Hofmann R, Hartung R (1988) Use of pulsed Nd:YAG laser in the ureter. Urol Clinics N Am 15(3):369–375

    Article  CAS  Google Scholar 

  4. Adkins WC, Dulabon DA, Chorazy ZJ, Lund PS, Johnson LM, Jones WV (1994) Consider Ho:YAG for low-cost, effective laser lithotripsy. Clin Laser Mon 12(9):139–141

    CAS  PubMed  Google Scholar 

  5. Larizgoitia I, Pons JM (1999) A systematic review of the clinical efficacy and effectiveness of the holmium:YAG laser in urology. BJU Int 84(1):1–9. https://doi.org/10.1046/j.1464-410x.1999.00096.x

    Article  CAS  PubMed  Google Scholar 

  6. Patel AP, Knudsen BE (2014) Optimizing use of the holmium:YAG laser for surgical management of urinary lithiasis. Curr Urol Rep 15(4):397. https://doi.org/10.1007/s11934-014-0397-2

    Article  PubMed  Google Scholar 

  7. Johnson DE, Cromeens DM, Price RE (1992) Use of the holmium:YAG laser in urology. Lasers Surg Med 12(4):353–363. https://doi.org/10.1002/lsm.1900120402

    Article  CAS  PubMed  Google Scholar 

  8. Kronenberg P, Traxer O (2015) Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers. World J Urol 33(4):463–469. https://doi.org/10.1007/s00345-014-1395-1

    Article  PubMed  Google Scholar 

  9. Aldoukhi AH, Ghani KR, Hall TL, Roberts WW (2017) Thermal response to high-power holmium laser lithotripsy. J Endourol 31(12):1308–1312. https://doi.org/10.1089/end.2017.0679

    Article  PubMed  Google Scholar 

  10. Wollin DA, Carlos EC, Tom WR, Simmons WN, Preminger GM, Lipkin ME (2018) Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model. J Endourol 32(1):59–63. https://doi.org/10.1089/end.2017.0658

    Article  PubMed  Google Scholar 

  11. Aboumarzouk OM, Monga M, Kata SG, Traxer O, Somani BK (2012) Flexible ureteroscopy and laser lithotripsy for stones > 2 cm: a systematic review and meta-analysis. J Endourol 26(10):1257–1263. https://doi.org/10.1089/end.2012.0217

    Article  PubMed  Google Scholar 

  12. Ventimiglia E, Pauchard F, Quadrini F, Sindhubodee S, Kamkoum H, Jiménez Godínez A, Doizi S, Traxer O (2021) High- and low-power laser lithotripsy achieves similar results: a systematic review and meta-analysis of available clinical series. J Endourol 35(8):1146–1152. https://doi.org/10.1089/end.2020.0090

    Article  PubMed  Google Scholar 

  13. Kronenberg P, Somani B (2018) Advances in lasers for the treatment of stones—a systematic review. Curr Urol Rep 19(6):45. https://doi.org/10.1007/s11934-018-0807-y

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chan KF, Pfefer TJ, Teichman JM, Welch AJ (2001) A perspective on laser lithotripsy: the fragmentation processes. J Endourol 15(3):257–273. https://doi.org/10.1089/089277901750161737

    Article  CAS  PubMed  Google Scholar 

  15. Sea J, Jonat LM, Chew BH, Qiu J, Wang B, Hoopman J, Milner T, Teichman JM (2012) Optimal power settings for Holmium:YAG lithotripsy. J Urol 187(3):914–919. https://doi.org/10.1016/j.juro.2011.10.147

    Article  PubMed  Google Scholar 

  16. Zhong P, Tong HL, Cocks FH, Pearle MS, Preminger GM (1998) Transient cavitation and acoustic emission produced by different laser lithotripters. J Endourol 12(4):371–378. https://doi.org/10.1089/end.1998.12.371

    Article  CAS  PubMed  Google Scholar 

  17. Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10(6):787–800. https://doi.org/10.1016/0360-3016(84)90379-1

    Article  CAS  PubMed  Google Scholar 

  18. Yarmolenko PS, Moon EJ, Landon C, Manzoor A, Hochman DW, Viglianti BL, Dewhirst MW (2011) Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia 27(4):320–343. https://doi.org/10.3109/02656736.2010.534527

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aldoukhi AH, Black KM, Hall TL, Ghani KR, Maxwell AD, MacConaghy B, Roberts WW (2020) Defining thermally safe laser lithotripsy power and irrigation parameters: in vitro model. J Endourol 34(1):76–81. https://doi.org/10.1089/end.2019.0499

    Article  PubMed  Google Scholar 

  20. Dau JJ, Hall TL, Maxwell AD, Ghani KR, Roberts WW (2021) Effect of chilled irrigation on caliceal fluid temperature and time to thermal injury threshold during laser lithotripsy: in vitro model. J Endourol 35(5):700–705. https://doi.org/10.1089/end.2020.0896

    Article  PubMed  Google Scholar 

  21. Kallidonis P, Amanatides L, Panagopoulos V, Kyriazis I, Vrettos T, Fligou F, Kamal W, Liatsikos EN (2016) Does the heat generation by the thulium: yttrium aluminum garnet laser in the irrigation fluid allow its use on the upper urinary tract? An experimental study. J Endourol 30(4):422–427. https://doi.org/10.1089/end.2015.0252

    Article  PubMed  Google Scholar 

  22. Hein S, Petzold R, Schoenthaler M, Wetterauer U, Miernik A (2018) Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model. World J Urol 36(9):1469–1475. https://doi.org/10.1007/s00345-018-2303-x

    Article  CAS  PubMed  Google Scholar 

  23. Noureldin YA, Farsari E, Ntasiotis P, Adamou C, Vagionis A, Vrettos T, Liatsikos EN, Kallidonis P (2021) Effects of irrigation parameters and access sheath size on the intra-renal temperature during flexible ureteroscopy with a high-power laser. World J Urol 39(4):1257–1262. https://doi.org/10.1007/s00345-020-03287-9

    Article  CAS  PubMed  Google Scholar 

  24. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds)(2019) Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane, Available from www.training.cochrane.org/handbook

  25. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  26. Aldoukhi AH, Hall TL, Ghani KR, Maxwell AD, MacConaghy B, Roberts WW (2018) Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model. J Endourol 32(8):724–729. https://doi.org/10.1089/end.2018.0395

    Article  PubMed  PubMed Central  Google Scholar 

  27. Molina WR, Silva IN, Donalisio da Silva R, Gustafson D, Sehrt D, Kim FJ (2015) Influence of saline on temperature profile of laser lithotripsy activation. J Endourol 29(2):235–239. https://doi.org/10.1089/end.2014.0305

    Article  PubMed  PubMed Central  Google Scholar 

  28. Butticè S, Sener TE, Proietti S, Dragos L, Tefik T, Doizi S, Traxer O (2016) Temperature changes inside the kidney: what happens during holmium:yttrium–aluminium-garnet laser usage? J Endourol 30(5):574–579. https://doi.org/10.1089/end.2015.0747

    Article  PubMed  Google Scholar 

  29. Maxwell AD, MacConaghy B, Harper JD, Aldoukhi AH, Hall TL, Roberts WW (2019) Simulation of laser lithotripsy-induced heating in the urinary tract. J Endourol 33(2):113–119. https://doi.org/10.1089/end.2018.0485

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang XK, Jiang ZQ, Tan J, Yin GM, Huang K (2019) Thermal effect of holmium laser lithotripsy under ureteroscopy. Chin Med J 132(16):2004–2007. https://doi.org/10.1097/cm9.0000000000000300

    Article  PubMed  PubMed Central  Google Scholar 

  31. Winship B, Terry R, Boydston K, Carlos E, Wollin D, Peters C, Li J, Preminger G, Lipkin M (2019) Holmium:yttrium-aluminum-garnet laser pulse type affects irrigation temperatures in a benchtop ureteral model. J Endourol 33(11):896–901. https://doi.org/10.1089/end.2019.0496

    Article  PubMed  Google Scholar 

  32. Winship B, Wollin D, Carlos E, Peters C, Li J, Terry R, Boydston K, Preminger GM, Lipkin ME (2019) The rise and fall of high temperatures during ureteroscopic holmium laser lithotripsy. J Endourol 33(10):794–799. https://doi.org/10.1089/end.2019.0084

    Article  PubMed  Google Scholar 

  33. Hein S, Petzold R, Suarez-Ibarrola R, Müller PF, Schoenthaler M, Miernik A (2020) Thermal effects of Ho:YAG laser lithotripsy during retrograde intrarenal surgery and percutaneous nephrolithotomy in an ex vivo porcine kidney model. World J Urol 38(3):753–760. https://doi.org/10.1007/s00345-019-02808-5

    Article  PubMed  Google Scholar 

  34. Liang H, Liang L, Yu Y, Huang B, Chen J, Wang C, Zhu Z, Liang X (2020) Thermal effect of holmium laser during ureteroscopic lithotripsy. BMC Urol 20(1):69. https://doi.org/10.1186/s12894-020-00639-w

    Article  PubMed  PubMed Central  Google Scholar 

  35. Aldoukhi AH, Dau JJ, Majdalany SE, Hall TL, Ghani KR, Hollingsworth JM, Ambani SN, Dauw CA, Roberts WW (2021) Patterns of laser activation during ureteroscopic lithotripsy: effects on caliceal fluid temperature and thermal dose. J Endourol. https://doi.org/10.1089/end.2020.1067

    Article  PubMed  Google Scholar 

  36. Teng J, Wang Y, Jia Z, Guan Y, Fei W, Ai X (2021) Temperature profiles of calyceal irrigation fluids during flexible ureteroscopic Ho:YAG laser lithotripsy. Int Urol Nephrol 53(3):415–419. https://doi.org/10.1007/s11255-020-02665-x

    Article  PubMed  Google Scholar 

  37. Molina WR, Marchini GS, Pompeo A, Sehrt D, Kim FJ, Monga M (2014) Determinants of holmium:yttrium-aluminum-garnet laser time and energy during ureteroscopic laser lithotripsy. Urology 83(4):738–744. https://doi.org/10.1016/j.urology.2013.11.017

    Article  PubMed  Google Scholar 

  38. Schafer SA, Durville FM, Jassemnejad B, Bartels KE, Powell RC (1994) Mechanisms of biliary stone fragmentation using the Ho:YAG laser. IEEE Trans Biomed Eng 41(3):276–283. https://doi.org/10.1109/10.284946

    Article  CAS  PubMed  Google Scholar 

  39. Teichman JM, Vassar GJ, Glickman RD (1998) Holmium:yttrium-aluminum-garnet lithotripsy efficiency varies with stone composition. Urology 52(3):392–397. https://doi.org/10.1016/s0090-4295(98)00239-8

    Article  CAS  PubMed  Google Scholar 

  40. Urano M, Kuroda M, Nishimura Y (1999) For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperthermia 15(2):79–107. https://doi.org/10.1080/026567399285765

    Article  CAS  PubMed  Google Scholar 

  41. Vassar GJ, Teichman JM, Glickman RD (1998) Holmium:YAG lithotripsy efficiency varies with energy density. J Urol 160(2):471–476. https://doi.org/10.1016/s0022-5347(01)62927-6

    Article  CAS  PubMed  Google Scholar 

  42. Miller MW, Ziskin MC (1989) Biological consequences of hyperthermia. Ultrasound Med Biol 15(8):707–722. https://doi.org/10.1016/0301-5629(89)90111-7

    Article  CAS  PubMed  Google Scholar 

  43. Dickson JA, Calderwood SK (1980) Temperature range and selective sensitivity of tumors to hyperthermia: a critical review. Ann N Y Acad Sci 335:180–205. https://doi.org/10.1111/j.1749-6632.1980.tb50749.x

    Article  CAS  PubMed  Google Scholar 

  44. Gross AJ, Netsch C (2017) Editorial Comment on: Thermal response to high-power holmium laser lithotripsy by Aldoukhi et al. J Endourol 31(12):1313. https://doi.org/10.1089/end.2017.0809

  45. Tekgul ZT, Pektas S, Yildirim U, Karaman Y, Cakmak M, Ozkarakas H, Gonullu M (2015) A prospective randomized double-blind study on the effects of the temperature of irrigation solutions on thermoregulation and postoperative complications in percutaneous nephrolithotomy. J Anesth 29(2):165–169. https://doi.org/10.1007/s00540-014-1888-5

    Article  PubMed  Google Scholar 

  46. Zhong W, Leto G, Wang L, Zeng G (2015) Systemic inflammatory response syndrome after flexible ureteroscopic lithotripsy: a study of risk factors. J Endourol 29(1):25–28. https://doi.org/10.1089/end.2014.0409

    Article  PubMed  Google Scholar 

  47. Tokas T, Skolarikos A, Herrmann TRW, Nagele U (2019) Pressure matters 2: intrarenal pressure ranges during upper-tract endourological procedures. World J Urol 37(1):133–142. https://doi.org/10.1007/s00345-018-2379-3

    Article  PubMed  Google Scholar 

  48. Tokas T, Herrmann TRW, Skolarikos A, Nagele U (2019) Pressure matters: intrarenal pressures during normal and pathological conditions, and impact of increased values to renal physiology. World J Urol 37(1):125–131. https://doi.org/10.1007/s00345-018-2378-4

    Article  PubMed  Google Scholar 

  49. US Department of Health and Human Services. Com- pliance Guide for Laser Products. Rockville, MD: US Department of Health and Human Services, 1992, p. 12.

  50. Roudkenar MH, Halabian R, Roushandeh AM, Nourani MR, Masroori N, Ebrahimi M, Nikogoftar M, Rouhbakhsh M, Bahmani P, Najafabadi AJ, Shokrgozar MA (2009) Lipocalin 2 regulation by thermal stresses: protective role of Lcn2/NGAL against cold and heat stresses. Exp Cell Res 315(18):3140–3151. https://doi.org/10.1016/j.yexcr.2009.08.019

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PR: data management, data analysis, manuscript writing. BKS: interpreting data, manuscript editing. UN: interpreting data. TRWH: interpreting data. TT: protocol/project development, data management, data analysis, manuscript writing.

Corresponding author

Correspondence to Theodoros Tokas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This review does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rice, P., Somani, B.K., Nagele, U. et al. Generated temperatures and thermal laser damage during upper tract endourological procedures using the holmium: yttrium–aluminum-garnet (Ho:YAG) laser: a systematic review of experimental studies. World J Urol 40, 1981–1992 (2022). https://doi.org/10.1007/s00345-022-03992-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-022-03992-7

Keywords

Navigation