Skip to main content
Log in

Influence of Arbuscular Mycorrhizal Fungi on Morphophysiological Responses and Secondary Metabolism in Lippia alba (Verbenaceae) Under Different Water Regimes

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In this study, we evaluated the influence of arbuscular mycorrhizal fungi (AMF) on the morphophysiological responses and production and composition dynamics of essential oils (EOs) in Lippia alba plants subjected to different water treatments. Cuttings of L. alba were planted in sterile soils either with or without AMF spores. Sixty days after planting, the plants were subjected to two water regimes: hydrated (75%) and water deficit (WD, 25%) for 60 days. Growth evaluations, gas exchanges, biochemical and morphophysiological analyses, and content and composition of the EOs were carried out. WD reduced the production of root biomass, stomatal density, water use efficiency, root/leaf biomass ratio, specific leaf area, leaf phosphorus content, and levels of photosynthetic pigments. It increased leaf temperature, antioxidant enzyme activity, and osmolyte accumulation in leaves and roots. In contrast, the association of AMF in plants under the WD regime promoted an increase in root biomass, specific leaf area, leaf relative water content, levels of photosynthetic pigments, leaf accumulation of carbohydrates, and content of EOs. WD and mycorrhization influenced the production of EO compounds, favoring the production of sesquiterpenes over the reduction of monoterpenes. The results showed that the beneficial action of AMF was greater when plants were under WD than when hydrated. Thus, WD promotes morphophysiological changes in L. alba. However, mycorrhization increases the tolerance, production, and composition of EOs in plants under water restriction. Therefore, AMF can be considered bioprotective in plants under water restriction and an enhancer of EO production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams RP (2017) Identification of essential oil components by gas chromatography/quadrupole mass espectroscopy, 4.1th edn. Allured Publishing Corporation, Carol Stream, 809p

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Tripathi DK, Deshmukh R, Singh VP, Corpas FJ (2019) Revisiting the role of ROS and RNS in plants under changing environment. Environ Exp Bot 161:1–3

    Article  CAS  Google Scholar 

  • Albuquerque Lima T, Queiroz Baptista NM, Oliveira APS, Silva PA, Gusmão NB, Santos Correia MT, Paiva PMG (2021) Insecticidal activity of a chemotype VI essential oil from Lippia alba leaves collected at Caatinga and the major compound (1, 8-cineole) against Nasutitermes corniger and Sitophilus zeamais. Pestic Biochem Physiol 177:104901

    Article  PubMed  Google Scholar 

  • Ali S, Hayat K, Iqbal A, Xie L (2020) Implications of abscisic acid in the drought stress tolerance of plants. Agronomy 10(9):1323. https://doi.org/10.3390/agronomy10091323

    Article  CAS  Google Scholar 

  • Almeida DJ, Alberton O, Otênio JK, Carrenho R (2020) Growth of chamomile (Matricaria chamomilla L.) and production of essential oil stimulated by arbuscular mycorrhizal symbiosis. Rhizosphere 15:1–8. https://doi.org/10.1016/j.rhisph.2020.100208

    Article  Google Scholar 

  • Arpanahi AA, Feizian M, Mehdipouriam G, Khojasteh DN (2020) Arbuscular mycorrhizal fungi inoculation improve essential oil and physiological parameters and nutritional values of Thymus daenensis Celak and Thymus vulgaris L. under normal and drought stress conditions. Eur J Soil Biol 100:1–11. https://doi.org/10.1016/j.ejsobi.2020.103217

    Article  CAS  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in leaves and roots of wild-type and catalase-deficient mutant of barley. Physiol Plant 104:280–292. https://doi.org/10.1034/j.1399-3054.1998.1040217.x

    Article  CAS  Google Scholar 

  • Azhar A, Makihara D, Naito H, Asano K, Takagi M, Unoki S, Ehara H (2021) Sago palm (Metroxylon sagu Rottb.) response to drought condition in terms of leaf gas exchange and chlorophyll a fluorescence. Plant Production Science 24(1):65–72

    Article  CAS  Google Scholar 

  • Aziz MA, Mehedi M, Akter MI, Sajon SR, Mazumder K, Rana MS (2019) In vivo and in silico evaluation of analgesic activity of Lippia alba. Clin Phytosci 5(1):1–9. https://doi.org/10.1186/s40816-019-0133-z

    Article  CAS  Google Scholar 

  • Azizi S, Kouchaksaraei MT, Hadian J, Abad ARFN, Sanavi SAMM, Ammer C, Bader MKF (2021) Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. For Ecol Manage 497:1–15. https://doi.org/10.1016/j.foreco.2021.119478

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashaf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1–15. https://doi.org/10.3389/fpls.2019.01068

    Article  Google Scholar 

  • Bhattacharjee S (2019) ROS and oxidative stress: origin and implication. Reactive oxygen species in plant biology. Springer, New Delhi, pp 1–31

    Chapter  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bravo K, Quintero C, Agudelo C, García S, Bríñez A, Osorio E (2020) CosIng database analysis and experimental studies to promote Latin American plant biodiversity for cosmetic use. Ind Crops Prod 144:112007

    Article  CAS  Google Scholar 

  • Caser M, Chitarra W, D’Angiolillo F, Perrone I, Demasi S, Lovisolo C, Pistelli L, Scariot V (2019) Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Ind Crops Prod 129:85–96. https://doi.org/10.1016/j.indcrop.2018.11.068

    Article  CAS  Google Scholar 

  • Castro KM, Batista DS, Silva TD, Fortini EA, Felipe SHS, Fernandes AM, Souza RHJ, Nascimento LSQ, Campos VR, Grazul RM, Viccini LF, Otoni WC (2020) Water deficit modulates growth, morphology, and the essential oil profile in Lippia alba L. (Verbenaceae) grown in vitro. Plant Cell Tiss Organ Cult 141:55–65

    Article  Google Scholar 

  • Embrapa – Empresa Brasileira de Pesquisa Agropecuária (1999) Manual de análises químicas de solos, plantas e fertilizantes. Embrapa Solos/Embrapa Informática Agropecuária/Embrapa Comunicação para Transferência de Tecnologia, Brasília, 0–370.

  • Fidalgo F, Santos A, Santos I, Salema R (2004) Effects of long-term salt stress on antioxidant defence systems, leaf water relations and chloroplasts ultra structure of potato plants. Ann Appl Biol 145:185–192. https://doi.org/10.1111/j.1744-7348.2004.tb00374.x

    Article  CAS  Google Scholar 

  • Freitas JCE, Resende CF, Pacheco VS, Grazul RM, Morais LE, Passos LP, Peixoto PHP (2020) Does the water regime differentially modulate the responses to water stress in Lippia alba (Verbenaceae) genotypes with different ploidy levels? Ind Crops Prod 160:1–10. https://doi.org/10.1016/j.indcrop.2020.113137

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golubkina N, Logvinenko L, Novitsky M, Zamana S, Sokolov S, Molchanova A, Shevchuk O, Sekara A, Tallarita A, Caruso G (2020) Yield, essential oil and quality performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as affected by arbuscular mycorrhizal fungi under organic management. Plants 9:1–16. https://doi.org/10.3390/plants9030375

    Article  CAS  Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162

    Article  Google Scholar 

  • Gutierrez J, Barry-Ryan C, Bourke P (2008) The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int J Food Microbiol 124:91–97

    Article  CAS  PubMed  Google Scholar 

  • Havir EA, Mchale NA (1987) Biochemical and developmental char-acterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Ma M, Wang Q, Zhang M, Jing G, Li C, Ma F (2020) Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiol Biochem 149:245–255. https://doi.org/10.1016/j.plaphy.2020.02.020

    Article  CAS  PubMed  Google Scholar 

  • Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP (2021) Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: a review. Physiol Plant 172(2):1106–1132

    Article  CAS  PubMed  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Kohli SK, Khanna K, Bhardwaj R, Abd_Allah EF, Ahmad P, Corpas FJ (2019) Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules.Antioxidants 8(12):641

  • Lermen C, Cruz RMS, Souza JS, Marchi BA, Alberton O (2017) Growth of Lippia alba (Mill.) N. E. Brown inoculated with arbuscular mycorrhizal fungi with different levels of humic substances and phosphorusin the soil. J Appl Res Med Aromat Plants 7:48–53. https://doi.org/10.1016/j.jarmap.2017.05.002

    Article  Google Scholar 

  • Li J, Meng B, Chai H, Yang X, Song W, Li S, Lu A, Zhang T, Sun W (2019) Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Front Plant Sci 10:1–12. https://doi.org/10.3389/fpls.2019.00499

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic membranes. Meth Enzym 148:350–382

    Article  CAS  Google Scholar 

  • Liu L, Li D, Ma Y, Shen H, Zhao S, Wang Y (2021) Combined application of arbuscular mycorrhizal fungi and exogenous melatonin alleviates drought stress and improves plant growth in tobacco seedlings. J Plant Growth Regul 40(3):1074–1087

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787. https://doi.org/10.1104/pp.010497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüddeke F, Wülfing A, Timke M, Germer F, Weber J, Dikfidan A, Rahnfeld T, Linder D, Meyerdierks A, Harder J (2012) Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans. Appl Environ Microbiol 78:2128–2136. https://doi.org/10.1128/AEM.07226-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadzadeh S, Pirzad A (2020) Biochemical responses of mycorrhizal-inoculated Lamiaceae (lavender, rosemary and thyme) plants to drought: a field study. Soil Sci Plant Nutr 67:1–9. https://doi.org/10.1080/00380768.2020.1851144

    Article  CAS  Google Scholar 

  • Murphy J, Riley JPA (1962) A modified simple solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  • Neffati M, Marzouk B (2008) Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crop Prod 28:137–142. https://doi.org/10.1016/j.indcrop.2008.02.005

    Article  CAS  Google Scholar 

  • Ortiz N, Jiménez MF, Chaverri C, Cicció JF, Díaz C (2021) Effect on cell growth, viability and migration of geraniol and geraniol-containing essential oil from Lippia alba (Verbenaceae) on gastric carcinoma cells. J Essent Oil Res 34:65–76

    Article  Google Scholar 

  • Ozturk M, Turkyilmaz UB, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M (2021) Osmoregulation and its actions during the drought stress in plants. Physiol Plant 172(2):1321–1335

    Article  CAS  PubMed  Google Scholar 

  • Palhares Neto L, Souza LM, Morais MB, Arruda E, Bressan RC, Albuquerque CC, Ulisses C (2019) Morphophysiological and biochemical responses of Lippia grata schauer (Verbenaceae) to water deficit. J Plant Growth Regul 39:26–40. https://doi.org/10.1007/s00344-019-09961-6

    Article  CAS  Google Scholar 

  • Peixoto MG, Blank AF, Arrigoni-Blank MF, Gagliardi PR, Melo JO, Nizio DAC, Pinto VS (2018) Activity of essential oils of lippia alba chemotypes and their major monoterpenes against phytopathogenic fungi. Biosci J 34:1136–1146. https://doi.org/10.14393/BJ-v34n5a2018-39385

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Biology 55:158–161

    Google Scholar 

  • Pokhrel Y, Felfelani F, Satoh Y, Boulange J, Burek P, Gädeke A, Wada Y (2021) Global terrestrial water storage and drought severity under climate change. Nat Clim Chang 11(3):226–233. https://doi.org/10.1038/s41558-020-00972-w

    Article  Google Scholar 

  • Püschel D, Bitterlich M, Rydlová J, Jansa J (2021) Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biol Biochem 157:108243. https://doi.org/10.1016/j.soilbio.2021.108243

    Article  CAS  Google Scholar 

  • Quiroga G, Erice G, Aroca R, Delgado-Huertas A, Ruiz-Lozano JM (2020) Elucidating the possible involvement of maize aquaporins and arbuscular mycorrhizal symbiosis in the plant ammonium and urea transport under drought stress conditions. Plants 9(2):148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez JJQ, Rugeles CIG, Stashenko EE, Hernández JCM, Galvis MLD, Sánchez LTG (2021) In vivo protection against chagasic cardiomyopathy progression using trypanocidal fractions from Lippia alba (Verbenaceae) essential oils. Ind Crops Prod 167:113553

    Article  Google Scholar 

  • Sheteiwy MS, Ali DFI, Xiong Y-C, Brestic M, Skalicky M, Hamoud YA, El-Sawah AM (2021) Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol 21(1):1–21. https://doi.org/10.1186/s12870-021-02949-z

    Article  Google Scholar 

  • Silva RER, Santiago IC, Bitu VCN, Kerntopf MR, Menezes IRA, Barbosa R (2018) Lippia alba (Mill.) N.E.Br. ex Britton & P. Wilson. In: Albuquerque UP, Patil U, Máthé Á (eds) Medicinal and Aromatic Plants of South America, vol 5. Springer, Dordrecht, pp 289–298. https://doi.org/10.1007/978-94-024-1552-0_25

    Chapter  Google Scholar 

  • Silva PT, Santos HS, Teixeira AMR, Bandeira PN, Vale JPC, Pereira EJP, Menezes JESA, Rodrigues THS et al (2019) Seasonal variation in the chemical composition and larvicidal activity against aedes aegypti of essential oils from Vitex gardneriana Schauer. S Afr J Bot 124:329–332

    Article  CAS  Google Scholar 

  • Sobrinho ACN, Morais SM, Marinho MM, Souza NV, Lima DM (2021) Antiviral activity on the Zika virus and larvicidal activity on the Aedes spp. of Lippia alba essential oil and β-caryophyllene. Ind Crops Prod 162:113281

    Article  Google Scholar 

  • Souza RC, Souza EM, Costa MM, Melo JFB, Baldisserotto B, Copatti CE (2019) Dietary addition of the essential oil from Lippia alba to Nile tilapia and its effect after inoculation with Aeromonas spp. Aquac Nutr 25:39–45. https://doi.org/10.1111/anu.12827

    Article  CAS  Google Scholar 

  • Souza LM, Barbosa MR, Morais MB, Palhares Neto L, Ulisses C, Camara TR (2020) Biochemical and morphophysiological strategies of Myracrodruon Allemão under water deficit. Biol Plant 64:20–31. https://doi.org/10.32615/bp.2019.070

    Article  CAS  Google Scholar 

  • Thomas RL, Shearrd RW, Moyer JR (1967) Comparision of conventional and automated procedures for N, P and K analysis of plant material using a single digestion. Agron J 59:240–243

    Article  CAS  Google Scholar 

  • Viana MG, Lutterbach MTS, Silva DR, Albuquerque CC, Santos FJN, Santos ES (2019) Antimicrobial and antibiofilm activity of essential oil of Lippia gracilis Schauer on Clostridium bifermentans and fungalcontaining biofilms. Austin Chem Eng 6:1066

    Google Scholar 

  • Wang H, Han J, Kanagarajan S, Lundgren A, Brodelius PE (2013) Studies on the expression of sesquiterpene synthases using promoter-β-glucuronidase fusions in transgenic Artemisia annua L. PLoS ONE 8:1–17. https://doi.org/10.1371/journal.pone.0080643

    Article  CAS  Google Scholar 

  • Wu J et al (2020) The response of stomatal conductance to seasonal drought in tropical forests. Glob Change Biol 26(2):823–839

    Article  Google Scholar 

  • Xie W, Hao Z, Zhou X, Jiang X, Xu L, Wu S, Zhao A, Zhang X, Chen B (2018) Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Mycorrhiza 28:285–300. https://doi.org/10.1007/s00572-018-0827-y

    Article  CAS  PubMed  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Int J Pharm Pract 7:197

    Google Scholar 

  • Zait Y, Shtein I, Schwartz A (2019) Long-term acclimation to drought, salinity and temperature in the thermophilic tree Ziziphus spina-christi: revealing different tradeoffs between mesophyll and stomatal conductance. Tree Physiol 39(5):701–716

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Cernusak LA, Song X (2020) Dynamic responses of gas exchange and photochemistry to heat interference during drought in wheat and sorghum. Funct Plant Biol 47(7):611–627

    Article  CAS  PubMed  Google Scholar 

  • Zou YN, Wu QS, Kuca K (2020) Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 23:50–57. https://doi.org/10.1111/plb.13161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Wellington Carneiro and Mr. Dário Primo for their help in carrying out the laboratory analyses. We are also grateful to Dr. Leonor Maia for the structural support for the multiplication of the spores of arbuscular mycorrhizal fungi.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

LPN: conducting the research, including the experiments, analyses, and writing of the article. LS-S: Conducting the experiments and physiological analyses. LS and MM: Biochemical analyses and writing. NC-R: gas exchange analysis. IMJ: multiplication of arbuscular mycorrhizal fungi and analysis of mycorrhizal colonization. CC and MM: Extraction and identification of essential oil compounds. CU: Orientation throughout the research, analysis, and writing of the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luiz Palhares Neto.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Handling Author: Vijay Pratap Singh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palhares Neto, L., Silva-Santos, L., de Souza, L.M. et al. Influence of Arbuscular Mycorrhizal Fungi on Morphophysiological Responses and Secondary Metabolism in Lippia alba (Verbenaceae) Under Different Water Regimes. J Plant Growth Regul 42, 827–841 (2023). https://doi.org/10.1007/s00344-022-10589-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10589-2

Keywords

Navigation