Skip to main content
Log in

Overexpression of MdPHR1 Enhanced Tolerance to Phosphorus Deficiency by Increasing MdPAP10 Transcription in Apple (Malus ×  Domestica)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Phosphorus is an essential nutrient during plant growth and development. It is involved in the formation of important compounds in plants, such as phospholipids, ATP, and nucleic acids. However, phosphorus is distributed unevenly in most soils, and exists primarily in the form of organophosphorus, which plants cannot use. In this study, the AtPHR1 homolog MdPHR1 was identified in apple. Our results showed that MdPHR1 contained a MYB domain and a coiled-coil domain, which were conserved in AtPHR1. The MdPHR1 transgenic lines had higher acid phosphatase activity and phosphorus content than the wild-type under phosphorus limited conditions. Overexpression of MdPHR1 enhanced tolerance to phosphorus deficiency in apple calli and Arabidopsis seedlings, and MdPHR1 could bind to the P1BS cis-element of MdPAP10 and activated its transcription. Collectively, our experimental evidence suggests that MdPHR1 may be the central regulator of the system controlling transcriptional responses to Pi starvation in apple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aleksza D, Horváth GV, Sándor G, Szabados L (2017) Proline accumulation is regulated by transcription factors associated with phosphate starvation. Plant Physiol 175:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An JP, Li HH, Song LQ, Su L, Liu X, You CX, Wang XF, Hao YJ (2016) The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiol Biochem 108:24–31

    Article  CAS  PubMed  Google Scholar 

  • An JP, Liu X, Li HH, You CX, Wang XF, Hao YJ (2017) Apple RING E3 ligase MdMIEL1 inhibits anthocyanin accumulation by ubiquitinating and degrading MdMYB1 protein. Plant Cell Physiol 58:1953–1962

    Article  CAS  PubMed  Google Scholar 

  • An JP, Zhang XW, Bi SQ, You CX, Wang XF, Hao YJ (2019) MdbHLH93, an apple activator regulating leaf senescence, is regulated by ABA and MdBT2 in antagonistic ways. N Phytol 222(2):735–751

    Article  CAS  Google Scholar 

  • Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatase. Methods Enzymol 8:115–118

    Article  CAS  Google Scholar 

  • Baek D, Kim MC, Chun HJ, Kang S, Park HC, Shin G, Park J, Shen M, Hong H, Kim WY, Kim DH, Lee SY, Bressan RA, Bohnert HJ, Yun DJ (2013) Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis. Plant Physiol 161:362–373

    Article  CAS  PubMed  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:225–252

    Article  CAS  Google Scholar 

  • Bournier M, Tissot N, Mari S, Boucherez J, Lacombe E, Briat JF, Gaymard F (2013) Arabidopsis ferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. J Biol Chem 288:22670–22680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briat JF, Rouached H, Tissot N, Gaymard F, Dubos C (2015) Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 PHR1. Front Plant Sci 6:125–132

    Article  Google Scholar 

  • Bulak A, David S, Hatem R, Yves P (2011) The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC Plant Biol 11:19

    Article  CAS  Google Scholar 

  • Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J (2010) A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet 6:e1001102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH (2009) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21:3554–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZH, Nimmo GA, Jenkins GI, Nimmo HG (2007) BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochem J 405:191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciereszko I, Szczygła A, Żebrowska E (2011) Phosphate deficiency affects acid phosphatase activity and growth of two wheat varieties. J Plant Nutr 34(6):815–829

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG (2009) Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol Plant 2:43–58

    Article  CAS  PubMed  Google Scholar 

  • Devaiah BN, Nagarajan VK, Raghothama KG (2007) Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol 145:147–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Ruan W, Li C, Huang F, Zeng M, Liu Y, Yu Y, Ding X, Wu Y, Wu Z (2015) Integrative comparison of the role of the PHOSPHATE RESPONSE1 subfamily in phosphate signaling and homeostasis in rice. Plant Physiol 168(4):1762–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Zhu H, Liu K, Liu X, Leggewie G, Udvardi M, Wang D (2002) Purple acid phosphatases of Arabidopsis thaliana. J Biol Chem 277:27772–27781

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xie Y, Wang H, Ma X, Yao W, Wang H (2017) Light and ethylene coordinately regulate the phosphate starvation response through transcriptional regulation of PHOSPHATE STARVATION RESPONSE1. Plant Cell 29:2269–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H, Rimmington G (1988) Mineral nutrition of higher plants. Plant Cell Environ 11:147–148

    Google Scholar 

  • Mehra P, Pandey BK, Giri J (2017) Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnol J 15(8):1054–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102:7760–7765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson L, Müller R, Nielsen TH (2007) Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ 30:1499–1512

    Article  CAS  PubMed  Google Scholar 

  • Nilsson L, Lundmark M, Jensen PE, Nielsen TH (2012) The Arabidopsis transcription factor PHR1 is essential for adaptation to high light and retaining functional photosynthesis during phosphate starvation. Physiol Plant 144:35–47

    Article  CAS  PubMed  Google Scholar 

  • Ren F, Guo QQ, Chang LL, Chen L, Zhao CZ, Zhong H, Li XB (2012) Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation. PLoS ONE 7:e44005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson WD, Joonho P, Tran HT, Del VHA, Sheng Y, Zins JL, Ketan P, Mcknight TD, Plaxton WC (2012) The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. J Exp Bot 63:6531–6542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz AJ (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev 15:2122–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69

    Article  CAS  PubMed  Google Scholar 

  • Su T, Xu Q, Zhang FC, Chen Y, Li LQ, Wu WH, Chen YF (2015) WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Physiol 167:1579–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh JY, Kim WT (2015) Arabidopsis RING E3 ubiquitin ligase AtATL80 is negatively involved in phosphate mobilization and cold stress response in sufficient phosphate growth conditions. Biochem Biophys Res Commun 463:793–799

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Song L, Zhang Y, Zheng Z, Liu D (2016) Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation. Plant Physiol 170:499–514

    Article  CAS  PubMed  Google Scholar 

  • Tao S, Zhang Y, Wang X, Xu L, Fang X, Lu ZJ, Liu D (2016) The THO/TREX complex active in mRNA export suppresses root-associated acid phosphatase activity induced by phosphate starvation. Plant Physiol 171:2841–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdéslópez O, Arenashuertero C, Ramírez M, Girard L, Sánchez F, Vance CP, Luis RJ, Hernández G (2008) Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. Plant Cell Environ 31:1834–1843

    Article  CAS  Google Scholar 

  • Wang H, Chen YF (2014) Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol 164:2020–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li Z, Qian W, Guo W, Gao X, Huang L, Wang H, Zhu H, Wu JW, Wang D (2011) The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiol 157:1283–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Lu S, Zhang Y, Li Z, Du X, Liu D (2014) Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation. J Integr Plant Biol 56:299–314

    Article  CAS  PubMed  Google Scholar 

  • Wasaki J, Yamamura T, Shinano T, Osaki M (2003) Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant Soil 248:129–136

    Article  CAS  Google Scholar 

  • Wu P, Shou H, Xu G, Lian X (2013) Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol 16:205–212

    Article  CAS  PubMed  Google Scholar 

  • Xie XB, Li S, Zhang RF, Zhao J, Chen YC, Zhao Q, Hao YJ (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ 35(11):1884–1897

    Article  CAS  PubMed  Google Scholar 

  • Xue YB, Xiao BX, Zhu SN, Mo XH, Liang CY, Tian J, Liao H (2017) GmPHR25, a GmPHR member up-regulated by phosphate starvation, controls phosphate homeostasis in soybean. J Exp Bot 68:4951–4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y-Y, Ren Y-R, Zheng P-F, Qu F-J, Song L-Q, You C-X, Wang X-F, Hao Y-J (2019) Functional identification of apple MdMYB2 gene in phosphate-starvation response. J Plant Physiol. https://doi.org/10.1016/j.jplph.2019.153089

    Article  PubMed  Google Scholar 

  • Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Żebrowska E, Milewska M, Ciereszko I (2017) Mechanisms of oat (Avena sativa L.) acclimation to phosphate deficiency. PeerJ 5:e3989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Żebrowska E, Zujko K, Kuleszewicz A, Ciereszko I (2018) The effects of diversified phosphorus nutrition on the growth of oat (Avena sativa L.) and acid phosphatase activity. Acta Soc Bot Pol 87(1):3571

    Article  CAS  Google Scholar 

  • Zhang Y, Wang X, Lu S, Liu D (2014) A major root-associated acid phosphatase in Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation. J Exp Bot 65:6577–6588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Agricultural Variety Improvement Project of Shandong Province (2019LZGC007), Shandong Education Department (J18KA174), the Ministry of Agriculture (CARS-27) and the NSFC (31471854) for funding this study.

Author information

Authors and Affiliations

Authors

Contributions

Y-JH, X-FW and RL designed the research. RL, J-PA, and C-XY performed the experiments and analyzed the data. Y-JH, RL and X-FW wrote the manuscript text.

Corresponding authors

Correspondence to Xiao-Fei Wang or Yu-Jin Hao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Supplementary file2 (DOCX 117 kb)

344_2020_10225_MOESM3_ESM.jpg

Supplementary file3 (JPG 628 kb) Supplementary Fig. 1 BCIP staining of wild-type and MdPHR1 transgenic Arabidopsis in + Pi and − Pi medium

344_2020_10225_MOESM4_ESM.jpg

Supplementary file4 (JPG 3659 kb) Supplementary Fig. 2 Surface-associated APase activity of wild type and MdPHR1 transgenic Arabidopsis in + Pi and − Pi medium. Different letters indicate statistically significant differences between the samples (P < 0.05)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., An, JP., You, CX. et al. Overexpression of MdPHR1 Enhanced Tolerance to Phosphorus Deficiency by Increasing MdPAP10 Transcription in Apple (Malus ×  Domestica). J Plant Growth Regul 40, 1753–1763 (2021). https://doi.org/10.1007/s00344-020-10225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10225-x

Keywords

Navigation