Skip to main content
Log in

Antifungal Potential of Plant Growth Promoting Bacillus Species Against Blossom Blight of Rose

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Blossom blight caused by Botrytis cinerea is one among the most devastating diseases that cause complete post-harvest loss in flower crops. The present study focuses on the development of effective bioformulation towards suppression of blossom blight and plant growth promotion in rose. Bacillus amyloliquefaciens (VB2) and Bacillus subtilis (AP) effectively inhibited mycelial growth of B. cinerea in vitro. Genome screening of VB2 and AP revealed the presence of antimicrobial peptide genes including, ituD, ipa14, bacA, bacD, srfA, sfP, spaC, spaS responsible for the biosynthesis of antibiotics such as iturin, bacilysin, bacillomycin, surfactin and subtilin. Further, the presence of volatile antifungal compounds in the bacterial secretome was identified through gas chromatography–mass spectrometry (GC/MS) analysis. Upon treatment, AP accelerated the metabolite profile of the plants and a rise in peak area of antifungal compounds such as, pentadecanoic acid, n-hexadecanoic acid, octadecanoic acid (stearic acid) and tetradecanoic acid was observed. In vitro, VB2 produced maximum indole acetic acid (9.17 µg/ml) and gibberellic acid (8.20 µg/ml) in nutrient broth. Under field conditions, foliar spray of VB2 at 0.5% (5 ml/l), four times at weekly interval suppressed blossom blight incidence (64% reduction over control) and also promoted yield. Future research towards development of an effective bioformulation with extended shelf life will aid in the management of various fungal, bacterial and viral diseases in different crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AbuQamar SF, Moustafa K, Tran LS (2016) ‘Omics’ and plant responses to Botrytis cinerea. Front Plant Sci 7:1658

    Article  PubMed  PubMed Central  Google Scholar 

  • AbuQamar S, Moustafa K, Tran LS (2017) Mechanisms and strategies of plant defense against Botrytis cinerea. Crit Rev Biotechnol 37(2):262–274

    Article  CAS  PubMed  Google Scholar 

  • Agoramoorthy G, Chandrasekaran M, Venkatesalu V, Hsu M (2007) Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Braz J Microbiol 38(4):739–742

    Article  Google Scholar 

  • Asadollahi M, Szojka A, Fekete E, Karaffa L, Takács F, Flipphi M, Sándor E (2013) Resistance to QoI fungicide and cytochrome b diversity in the Hungarian Botrytis cinerea population. J Agric Sci Technol 15:397–407

    CAS  Google Scholar 

  • Bruce RJ, West CA (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures caster bean. Plant Physiol 91:889–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P, Dommes J, Ongena M (2014) Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol Plant–Microbe Interact 27(2):87–100

    Article  CAS  PubMed  Google Scholar 

  • Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 8(2):281–295

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Kong H, Buyer JS, Lakshman DK, Lydon J, Kim SD, Roberts DP (2008) Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soil borne pathogens of cucumber and pepper. Appl Microbiol Biotechnol 80:115–123

    Article  CAS  PubMed  Google Scholar 

  • Daayf F, Schmitt A, Bélanger RR (1997) Evidence of phytoalexins in cucumber leaves infected with powdery mildew following treatment with leaf extracts of Reynoutria sachalinensis. Plant Physiol 113(3):719–727

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennis C, Webster J (1971) Antagonistic properties of species group of Trichoderma production of non-volatile antibiotics. Trans Br Mycol Soc 57:25–39

    Article  CAS  Google Scholar 

  • Dheepa R, Vinodkumar S, Renukadevi P, Nakkeeran S (2016) Phenotypic and molecular characterization of chrysanthemum white rust pathogen Puccinia horiana (Henn) and the effect of liquid based formulation of Bacillus spp. for the management of Chrysanthemum white rust under protected cultivation. Biol Control 103:172–186

    Article  Google Scholar 

  • Dickerson DP, Pascholati SF, Hagerman AE, Butler LG, Nicholson RL (1984) Phenylalanine ammonia-lyase and hydroxy cinnamate CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol Mol Plant Pathol 25:111–123

    Article  CAS  Google Scholar 

  • Durairaj K, Velmurugan P, Park J-H, Chang W-S, Park Y-J, Senthilkumar P, Choi K-M, Lee J-H, Oh B-T (2018) Characterization and assessment of two biocontrol bacteria against Pseudomonas syringae wilt in Solanum lycopersicum and its genetic responses. Microbiol Res 206:43–49

    Article  PubMed  Google Scholar 

  • Fernando WGD, Ramarathnam R, Krishnamoorthy AS (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Gao X, Han Q, Chen Y, Qin H, Huang L, Kang Z (2014) Biological control of oilseed rape Sclerotinia stem rot by Bacillus subtilis strain Em7. Biocontrol Sci Technol 24(1):39–52

    Article  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedure for agricultural research. Wiley, New York

    Google Scholar 

  • Gorden SA, Paleg LG (1957) Quantitative measurements of indole acetic acid. Physiol Plant 4:24–27

    Google Scholar 

  • Gruau C, Trotel-Aziz P, Villaume S, Rabenoelina F, Ci C, Baillieul F et al (2015) Pseudomonas fluorescens PTA-CT2 triggers local and systemic immune response against Botrytis cinerea in grapevine. Mol Plant–Microbe Interact 28:1117–1129

    Article  CAS  PubMed  Google Scholar 

  • Hammerschmidt R, Nuckles EM, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Mol Plant Pathol 20:73–82

    Article  CAS  Google Scholar 

  • Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biol Control 51:16–25

    Article  CAS  Google Scholar 

  • Hausbeck MK, Moorman GW (1996) Managing Botrytis in greenhouse-grown flower crops. Plant Dis 80:1212–1219

    Article  Google Scholar 

  • Henry GE, Momin RA, Nair MG, Dewitt DL (2002) Antioxidant and cyclooxygenase activities of fatty acids found in food. J Agric Food Chem 50(8):2231–2234

    Article  CAS  PubMed  Google Scholar 

  • Indian Horticulture Database (2017) Statistical data. http://nhb.gov.in/statistics/Publication/Horticulture%20At%20a%20Glance%202017%20for%20net%20uplod%20(2).pdf

  • Jarvis WR (1980) Taxonomy. In: Coley-Smith JR, Verhoeff K, Jarvis WR (eds) The biology of Botrytis. Academic, London, pp 1–17

    Google Scholar 

  • Ji SH (2013) Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology 41(4):234–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Liao M, Wang H, Zheng M, Xu J, Guo J (2018) Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biol Control 126:147–157

    Article  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kefi A, Slimene B, Karkouch I, Rihouey C, Azaeiz S, Bejaoui M, Belaid R, Cosette P, Jouenne T, Limam F (2015) Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. World J Microbiol Biotechnol 31(12):1967–1976

    Article  CAS  PubMed  Google Scholar 

  • Khazaeli P, Zamanizadeh H, Morid B, Bayat H (2010) Morphological and molecular identification of Botrytis cinerea causal agent of gray mold in rose greenhouses in central regions of Iran. Int J Agric Sci Res 1:19–24

    Google Scholar 

  • Kim YS, Song YG, Lee IK, Yeo WH, Yun BS (2013) Bacillus sp. BS061 suppresses powdery mildew and gray mold. Mycobiology 41(2):108–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan A, Sridhar R (1982) Methods in physiological plant pathology, 2nd edn. Sivakami Publishers, Madras, pp 24–44

    Google Scholar 

  • Mayer AM, Harel E, Shaul RB (1965) Assay of catechol oxidase: a critical comparison of methods. Phytochemistry 5:783–789

    Article  Google Scholar 

  • Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13(3):638–649

    Google Scholar 

  • Montesinos E, Bonaterra A (2009) Microbial pesticides. M. Schaechter. In Encyclopedia of Microbiology, Ed. 3rd ed. Elsevier. Pp. 110–120

  • Mora I, Cabrefiga J, Montesinos E (2011) Antimicrobial peptide genes in Bacillus strains from plant environments. Int Microbiol 14:213–223

    CAS  PubMed  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongena M, Jacques P (2007) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  Google Scholar 

  • Patel JS, Kharwar RN, Singh HB, Upadhyay RS, Sarma BK (2017) Trichoderma asperellum (T42) and Pseudomonas fluorescens (OKC)-enhances resistance of pea against Erysiphe pisi through enhanced ROS generation and lignifications. Front Microbiol 8:306

    PubMed  PubMed Central  Google Scholar 

  • Pourbabaee AA, Bahmani E, Alikhani HA, Emami S (2016) Promotion of wheat growth under salt stress by halotolerant bacteria containing ACC deaminase. J Agric Sci Technol 18:855–864

    Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan R, Hashem A, Abd Allah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667

    Article  PubMed  PubMed Central  Google Scholar 

  • Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN (2017) Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS ONE 12(11):e0187412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajeswari G, Murugan M, Mohan VR (2012) GC–MS analysis of bioactive components of Hugonia mystax L. (Linaceae). Res J Pharm Biol Chem Sci 3(4):301–308

    CAS  Google Scholar 

  • Reetha S, Bhuvaneswari G, Thamizhiniyan P, Ravi Mycin T (2014) Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allim cepa L.). Int J Curr Microbiol Appl Sci 3(2):568–574

    Google Scholar 

  • Rimola A, Costa D, Sodupe M, Lambert JF, Ugliengo P (2013) Silica surface features and their role in the adsorption of bio-molecules: computational modeling and experiments. Chem Rev 4:1–12

    Google Scholar 

  • Romero D, De Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant–Microbe Interact 20:430–440

    Article  CAS  PubMed  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381

    Article  CAS  PubMed  Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31(3):446–459

    Article  CAS  Google Scholar 

  • Siripornvisal S (2010) Biocontrol efficacy of Bacillus subtilis BCB3-19 against tomato gray mold. KMITL Sci Technol J 10(2):37–44

    Google Scholar 

  • Srivastava S, Patel JS, Singh HB, Sinha A, Sarma BK (2015) Streptomyces rochei SM3 induces stress tolerance in chickpea against Sclerotinia sclerotiorum and NaCl. J Phytopathol 163:583–592

    Article  CAS  Google Scholar 

  • Tien TM, Gasking MH, Hubbel DH (1979) Plant growth substances produced by A. brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC (1997) Induced resistance in plant and the role of pathogenesis related protein. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Vidhyasekaran P (2014) PAMP signals in plant innate immunity: signal perception and transduction. Springer, Dordrecht

    Book  Google Scholar 

  • Vinodkumar S, Nakkeeran S (2017) Characterization and management of Botrytis cinerea inciting blossom blight of carnation under protected cultivation. J Environ Biol 38(4):527–537

    Article  Google Scholar 

  • Vinodkumar S, Nakkeeran S (2018) Bacillus amyloliquefaciens (VB7) with diverse anti microbial peptide genes: a potential antagonist for the management of fairy ring spot in carnations. Curr Sci 115(8):1519–1524

    Article  CAS  Google Scholar 

  • Vinodkumar S, Nakkeeran S, Renukadevi P, Malathi VG (2017) Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Front Microbiol 8:446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinodkumar S, Nakkeeran S, Renukadevi P, Mohankumar S (2018) Diversity and antiviral potential of rhizospheric and endophytic Bacillus species and phyto-antiviral principles against tobacco streak virus in cotton. Agric Ecosyst Environ 267:42–51

    Article  CAS  Google Scholar 

  • Wang X, Wang L, Wang J, Jin P, Liu H, Zheng Y (2014) Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit. PLoS ONE 9(11):e112494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, van Kan J (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580

    Article  CAS  PubMed  Google Scholar 

  • Xu SS, Friesen TL, Mujeeb-Kazi A (2004) Seedling resistance to tan spot and Stagonospora nodorum blotch in synthetic hexaploid wheats. Crop Sci 44:2238–2245

    Article  Google Scholar 

  • Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S et al (2014) Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J Microbiol Biotechnol 30:835–845

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181–187

    Article  CAS  PubMed  Google Scholar 

  • Zapata Y, Díaz A, Grijalba E, Rodríguez F, Elad Y, Cotes AM (2016) Phyllosphere yeasts with potential for biological control of Botrytis cinerea in rose. Acta Hortic 1144:77–84

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by Professor and Head (Department of Plant Pathology) and The Dean, School of Post Graduate Studies, Tamil Nadu Agricultural University. DST-FIST (Department of Science and Technology, New Delhi) and UGC-SAP are deeply acknowledged for providing infrastructure facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevugapperumal Nakkeeran.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Researchgate: https://www.researchgate.net/profile/Vinodkumar_S/publications?pubType=article.

Website: https://vinodkumarplantpathology.wordpress.com/.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakkeeran, S., Surya, T. & Vinodkumar, S. Antifungal Potential of Plant Growth Promoting Bacillus Species Against Blossom Blight of Rose. J Plant Growth Regul 39, 99–111 (2020). https://doi.org/10.1007/s00344-019-09966-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-09966-1

Keywords

Navigation