Skip to main content
Log in

V-ATPase and V-PPase at the Tonoplast Affect NO3 Content in Brassica napus by Controlling Distribution of NO3 Between the Cytoplasm and Vacuole

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nitrate, once taken up by plants, can either be stored in vacuoles or reduced by nitrate reductase in the cytoplasm. High accumulation of NO3 in the vacuole occurs when assimilation into the cytoplasm is saturated. This study elucidates how proton pumps at the tonoplast (V-ATPase and V-PPase) affect the NO3 content of Brassica napus by controlling the distribution of NO3 between the cytoplasm and vacuole. Pot experiments were conducted in a greenhouse under normal N (15.0 mM nitrate) conditions using B. napus genotypes that demonstrated either high (Xiangyou15) or low (814) nitrogen use efficiency (NUE). The NO3 content of the high NUE genotype was significantly lower than that of the low NUE genotype, whereas the total N per plant of the two genotypes was almost the same, suggesting that the different NUE between the two genotypes is not due to the difference of NO3 uptake. The relative expression levels of V-ATPase (vha-a3) and V-PPase (avp1) genes in the high NUE genotype were significantly lower than in the low NUE genotype, resulting in lower V-ATPase and V-PPase activities in the high NUE genotype. The transport of NO3 and protons from the cytoplasm to the vacuole is powered by V-ATPase and V-PPase, so their lower activities increase H+ efflux from and reduce NO3 influx into the vacuoles of the high NUE genotype. We conclude that the lower activity of proton pumps at the tonoplast is the main reason the high NUE genotype possesses lower NO3 content and higher N-use efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angeli AD, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–942

    Article  PubMed  Google Scholar 

  • Birk EM, Vitousek PM (1986) Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology 67(1):69–79

    Article  Google Scholar 

  • Brux A, Liu TY, Krebs M, Stierhof YD, Lohmann JU, Miersch O, Wasternack C, Schumacher K (2008) Reduced V-ATPase activity in the trans-Golgi network causes oxylipin-dependent hypocotyl growth inhibition in Arabidopsis. Plant Cell 20:1088–1100

    Article  PubMed Central  PubMed  Google Scholar 

  • Cao CL, Liu JZ, Yao C (2007) Effect of different respiratory inhibitors on the nitrate reductase activity. J Northwest Agric For Univ 35(8):185–188

    Google Scholar 

  • Cao YB, Gao ZQ, He JP, Wang M, Gao RF (2009) Effects of exogenous salicylic acid on nitrate accumulation and reduction and assimilation in the leaves of Chinese chive. Acta Hortic Sin 36(3):415–420

    CAS  Google Scholar 

  • Chen W, Luo JK, Yin XM, Jia JL, Zhang PW, Shen QR (2005) Distribution and remobilization of nitrate in two cultivars of pakchoi plant. Sci Agric Sin 38(11):2277–2282

    CAS  Google Scholar 

  • Cookson SJ, Williams LE, Miller AJ (2005) Light–dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells. Plant Physiol 138:1097–1105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan XR, Jia LJ, Li YL, Smith SJ, Miller AJ, Shen QR (2007) Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J Exp Bot 58(7):1729–1740

    Article  CAS  PubMed  Google Scholar 

  • Fecht-Bartenbach JVD, Bogner M, Dynowski M, Ludewig U (2010) ClC-b-mediated NO3 /H+ exchange across the tonoplast of Arabidopsis vacuoles. Plant Cell Physiol 51(6):960–968

    Article  PubMed  Google Scholar 

  • Gallais A, Hirel B (2004) An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot 55:295–306

    Article  CAS  PubMed  Google Scholar 

  • Garrido FDSRG, Garrido RG, Bucher CA, Souza SRD, Fernandes MS (2008) Rice varieties tonoplast and plasma membrane H+-ATPases differences activities in responses to nitrate pulses. J Biol Sci 8(1):107–112

    Article  CAS  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864

    Article  CAS  PubMed  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  CAS  PubMed  Google Scholar 

  • Granstedt RC, Huffaker RC (1982) Identification of the leaf vacuole as a major nitrate storage pool. Plant Physiol 70:410–413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He J, Qin J, Long L, Ma Y, Li H, Li K, Jing X, Liu T, Polle A, Liang Z, Luo ZB (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol Plant 143:50–63

    Article  CAS  PubMed  Google Scholar 

  • Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang CB, Wang ZH, Li SX (2006) Nutritional and physiological significance of nitrate accumulation in plant vacuolar. Soils 38(6):820–824

    CAS  Google Scholar 

  • Huang CB, Wang ZH, Wang XY, Li SX (2011) Nitrate accumulation and reduction in Spinach and their relations to plant growth. J Agro Environ Sci 30(4):613–618

    CAS  Google Scholar 

  • Isokawa S, Osaka M, Shirasawa A, Kikuta R, Komatsu S, Horisaki A, Niikura S, Takada Y, Shiba H, Isogai A, Takayama S, Suzuki G, Suwabe K, Watanabe M (2010) Novel self-compatible lines of Brassica rapa L. isolated from the Japanese bulk-populations. Genes Genet Syst 85:87–96

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Chandna R, Pandey R, Abrol YP, Iqbal M, Ahmad A (2011) Sulfur starvation and restoration affect nitrate uptake and assimilation in rapeseed. Protopasma 248:299–311

    Article  CAS  Google Scholar 

  • Kluge C, Lahr J, Hanitzsch M, Bolte S, Golldack D, Dietz K (2003) New insight into the structure and regulation of the plant vacuolar H+-ATPase. J Bioenerg Biomembr 35(4):377–388

    Article  CAS  PubMed  Google Scholar 

  • Krebs M, Beyhl D, Gorlich E, Al-Rasheid KA, Marten I, Stierhof YD, Hedrich R, Schumacher K (2010) Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc Nat Acad Sci USA 107:3251–3256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lea US, Hoopen FT, Kaiser FPWM, Meyer C, Lillo C (2004) Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue. Planta 219:59–65

    Article  CAS  PubMed  Google Scholar 

  • Li RJ, Wang HZ, Mao H, Lu YT, Hua W (2006) Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content. Planta 224:952–962

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li BH, Kronzucker HJ, Shi WM (2010) Root growth inhibition by NH4 + in Arabidopsis is mediated by the root tip and is linked to NH4 + efflux and GMPase activity. Plant Cell Environ 33:1529–1542

    Article  CAS  PubMed  Google Scholar 

  • Linka N, Weber APM (2010) Intracellular metabolite transporters in plants. Mol Plant 3(1):21–53

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Qin JJ, He FF, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2013) Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis. Planta 237:919–931

    Article  CAS  PubMed  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Massonneau A, Frangne N (2000) Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol 41(11):1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  CAS  PubMed  Google Scholar 

  • Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. J Exp Bot 47:843–854

    Article  CAS  Google Scholar 

  • Miller AJ, Smith SJ (2008) Cytosolic nitrate ion homeostasis, could it have a role in sensing nitrogen status. Ann Bot 101:485–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakanishi Y, Maeshima M (1998) Molecular cloning of vacuolar H (+) pyrophosphatase and its development expression in growing hypocotyl of mung bean. Plant Physiol 116:589–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richard-Molard C, Krapp A, Brun F, Ney B, Daniel-Vedele F, Chaillou S (2008) Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes. J Exp Bot 59(4):779–791

    Article  CAS  PubMed  Google Scholar 

  • Shen QR, Tang L, Xu YC (2003) A review on the behavior of nitrate in vacuoles of plants. Acta Pedol Sin 40(3):465–470

    CAS  Google Scholar 

  • Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang ZK, Song J, Xu Y (2009) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149:1141–1153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H, Wang TZ, Dong CH, Wang ZQ (2000) Purification and reconstitution of tonoplast H+-ATPases from soybean. Chin J Biochem Mol Biol 16(1):110–115

    CAS  Google Scholar 

  • Wang B, Nai T, Jia JL, Shen QR (2008) Relationship between nitrate remobilization in root vacuoles and plant growth of two genotypes of lettuce. Acta Pedol Sin 45(3):555–560

    Google Scholar 

  • Xu GH, Fan XR, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZH, Song HX, Liu Q, Rong XM, Xie GX, Peng JW, Zhang YP (2009) Study on differences of nitrogen efficiency and nitrogen response in different oilseed rape (Brassica napus L.) varieties. Asian. J Crop Sci 1(2):105–112

    Google Scholar 

  • Zhang ZH, Song HX, Liu Q, Rong XM, Xie GX, Peng JW, Zhang YP, Guan CY, Chen SY (2010) Nitrogen redistribution characteristics of oilseed rape varieties with different nitrogen use efficiencies during later growth period. Commun Soil Sci Plant Anal 41(14):1693–1706

    Article  CAS  Google Scholar 

  • Zhao SP, Ye XZ, Zhang YZ, Zheng JC (2010) The contribution of bnnrt1 and bnnrt2 to nitrate accumulation varied according to genotypes in Chinese cabbage. Afr J Biotechnol 9(31):4910–4917

    CAS  Google Scholar 

  • Zhu ZJ, Qian YR, Pfeiffer W (2001) Effect of nitrogen form on the activity of tonoplast pyrophosphatase in tomato roots. Acta Bot Sin 43(11):1146–1149

    CAS  Google Scholar 

  • Zou Q (1995) Guidance of plant physiology and biochemistry experiment. Agricultural Press, Beijing, pp 30–31

    Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grant nos. 31101596 and 31372130), Talent Scholar of Hunan Agricultural University (11YJ21) P. R. China. FuRong Scholar Program of Hunan Province, P. R. China, The “Twelfth Five-Year” National Science and technology support program (2012BAD15BO4). Open project of National Key Laboratory of Plant Molecular Genetics. Open novel science foundation of Hunan province (13K062). We thank Tanya Streeter and Juanita Johns from the University of West Florida, United States of America for proofreading drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haixing Song or Zhenhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Liu, Q., Gu, J. et al. V-ATPase and V-PPase at the Tonoplast Affect NO3 Content in Brassica napus by Controlling Distribution of NO3 Between the Cytoplasm and Vacuole. J Plant Growth Regul 34, 22–34 (2015). https://doi.org/10.1007/s00344-014-9439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-014-9439-8

Keywords

Navigation