Skip to main content
Log in

The adjoint-based Two Oceans One Sea State Estimate (TOOSSE)

  • Physics
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

An eddy-resolving four-dimensional variational (adjoint) data assimilation and state estimate was constructed for the low- to mid-latitude Pacific, Indian Oceans, and South China Sea based on the framework of “Estimating the Circulation and Climate of the Oceans (ECCO)”. It is named as the Two Oceans One Sea State Estimate (TOOSSE). It fits a model to a number of modern observations of 2015–2016, including the Argo float temperature and salinity, satellite altimetric sea surface anomalies, by adjusting initial temperature and salinity, sea surface boundary conditions, and background diapycnal diffusivities. In total, ∼50% of the original model-data misfits have been eliminated, and the estimated state agreed well with a variety of independent observations at meso- to large scales, and on the intra-seasonal to interannual timescales. Mesoscale variability is systematically strengthened in TOOSSE and closer to observations than that without data assimilation, which is especially evidenced by the improved simulation of the mesoscale tropical instability waves (TIWs). Adjustments to ocean surface forcing parameters exhibit both large and frontal/mesoscale structures, and the magnitude reach 20%–100% of the first guesses; the adjustments to diapycnal diffusivity exhibit an obvious elevation (decrement) in (below) the thermocline in the equatorial band. The results indicate that TOOSSE represents a dynamically and thermodynamically consistent ocean state estimate of the 2015–2016 Indo-Pacific Ocean, and can be widely utilized for regional process studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

All data generated and/or analyzed during this study are available from the corresponding author.

References

  • Alford M H, Gregg M C. 2001. Near-inertial mixing: modulation of shear, strain and microstructure at low latitude. Journal of Geophysical Research: Oceans, 106(C8): 16 947–16 968.

    Article  Google Scholar 

  • Alford M H, MacKinnon J A, Zhao Z X, Pinkel R, Klymak J, Peacock T. 2007. Internal waves across the Pacific. Geophysical Research Letters, 34(24): L24601.

    Article  Google Scholar 

  • Andersen O B, Knudsen P. 2009. DNSC08 mean sea surface and mean dynamic topography models. Journal of Geophysical Research: Oceans, 114(C11): C11001.

    Article  Google Scholar 

  • Bleck R. 2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modelling, 4(1): 55–88.

    Article  Google Scholar 

  • Brix H, Menemenlis D, Hill C, Dutkiewicz S, Jahn O, Wang D, Bowman K, Zhang H. 2015. Using Green’s functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model. Ocean Modelling, 95: 1–14, https://doi.org/10.1016/j.ocemod.2015.07.008.

    Article  Google Scholar 

  • Brown J N, Langlais C, Maes C. 2014. Zonal structure and variability of the Western Pacific dynamic warm pool edge in CMIP5. Climate Dynamics, 42(11–12): 3 061–3 076.

    Article  Google Scholar 

  • Carroll D, Menemenlis D, Adkins J F, Bowman K W, Brix H, Dutkiewicz S, Fenty I, Gierach M M, Hill C, Jahn O, Landschützer P, Lauderdale J M, Liu J, Manizza M, Naviaux J D, Rödenbeck C, Schimel D S, Van der Stocken T, Zhang H. 2020. The ECCO-Darwin data-assimilative global ocean biogeochemistry model: estimates of seasonal to multidecadal surface ocean pCO2 and air-sea CO2 flux. Journal of Advances in Modeling Earth Systems, 12(10): e2019MS001888, https://doi.org/10.1029/2019MS001888.

    Article  Google Scholar 

  • Chelton D B, deSzoeke R A, Schlax M G, El Naggar K, Siwertz N. 1998. Geographical variability of the first baroclinic rossby radius of deformation. Journal of Physical Oceanography, 28(3): 433–460.

    Article  Google Scholar 

  • Clarke A J. 2014. El Niño physics and El Niño predictability. Annual Review of Marine Science, 6: 79–99.

    Article  Google Scholar 

  • Cooper M, Haines K. 1996. Altimetric assimilation with water property conservation. Journal of Geophysical Research: Oceans, 24(C1): 1 059–1 077.

    Article  Google Scholar 

  • D’Orgeville M, Hua B L. 2005. Equatorial inertial-parametric instability of zonally symmetric oscillating shear flows. Journal of Fluid Mechanics, 531: 261–291.

    Article  Google Scholar 

  • Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656): 553–597.

    Article  Google Scholar 

  • Fenty I, Menemenlis D, Zhang H. 2017. Global coupled sea ice-ocean state estimation. Climate Dynamics, 49(3): 931–956, https://doi.org/10.1007/s00382-015-2796-6.

    Article  Google Scholar 

  • Flament P J, Kennan S C, Knox R A, Niiler P P, Bernstein R L. 1996. The three-dimensional structure of an upper ocean vortex in the tropical Pacific Ocean. Nature, 383(6601): 610–613.

    Article  Google Scholar 

  • Forget G, Campin J M, Heimbach P, Hill C N, Ponte R M, Wunsch C. 2015. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development, 8(10): 3 071–3 104.

    Article  Google Scholar 

  • Furue R, McCrearyJr J P, Yu Z J. 2009. Dynamics of the northern Tsuchiya jet. Journal of Physical Oceanography, 39(9): 2 024–2 051.

    Article  Google Scholar 

  • Furue R, McCrearyJr J P, Yu Z J, Wang D L. 2007. Dynamics of the southern Tsuchiya jet. Journal of Physical Oceanography, 37(3): 531–553.

    Article  Google Scholar 

  • Giering R, Kaminski T. 1998. Recipes for adjoint code construction. ACM Transactions on Mathematical Software, 24(4): 437–474.

    Article  Google Scholar 

  • Gilbert J C, Lemaréchal C. 1989. Some numerical experiments with variable-storage quasi-newton algorithms. Mathematical Programming, 45(1–3): 407–435.

    Article  Google Scholar 

  • Gopalakrishnan G, Cornuelle B D, Hoteit I. 2013a. Adjoint sensitivity studies of loop current and eddy shedding in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 118(7): 3 315–3 335.

    Article  Google Scholar 

  • Gopalakrishnan G, Cornuelle B D, Hoteit I, Rudnick D L, Owens W B. 2013b. State estimates and forecasts of the loop current in the Gulf of Mexico using the MITgcm and its adjoint. Journal of Geophysical Research: Oceans, 118(7): 3 292–3 314.

    Article  Google Scholar 

  • Gregg M C, Winkel D P, Sanford T B, Peters H. 1996. Turbulence produced by internal waves in the oceanic thermocline at mid and low latitudes. Dynamics of Atmospheres and Oceans, 24(1–4): 1–14.

    Article  Google Scholar 

  • Halpern D, Menemenlis D, Wang X C. 2015. Impact of data assimilation on ECCO2 equatorial undercurrent and north equatorial countercurrent in the Pacific Ocean. Journal of Atmospheric and Oceanic Technology, 32(1): 131–143, https://doi.org/10.1175/JTECH-D-14-00025.1.

    Article  Google Scholar 

  • Hoteit I, Cornuelle B, Thierry V, Stammer D. 2008. Impact of resolution and optimized ECCO forcing on simulations of the tropical Pacific. Journal of Atmospheric and Oceanic Technology, 25(1): 131–147.

    Article  Google Scholar 

  • Hoteit I, Cornuelle B, Heimbach P. 2010. An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000. Journal of Geophysical Research, 115(C3): C03001.

    Article  Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera S K, Luo J J, Cravatte S, Masson S, Yamagata T. 2010. Influence of the state of the Indian Ocean Dipole on the following year’s El Nino. Nature Geoscience, 3(3): 168–172.

    Article  Google Scholar 

  • Johnson G C, Sloyan B M, Kessler W S, McTaggart K E. 2002. Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s. Progress in Oceanography, 52(1): 31–61.

    Article  Google Scholar 

  • Köhl A. 2015. Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic. Quarterly Journal of the Royal Meteorological Society, 141(686): 166–181.

    Article  Google Scholar 

  • Köhl A. 2020. Evaluating the GECCO3 1948–2018 ocean synthesis-a configuration for initializing the MPI-ESM climate model. Quarterly Journal of the Royal Meteorological Society, 146(730): 2 250–2 273.

    Article  Google Scholar 

  • Köhl A, Stammer D. 2008. Variability of the meridional overturning in the North Atlantic from the 50-Year GECCO state estimation. Journal of Physical Oceanography, 38(9): 1 913–1 930.

    Article  Google Scholar 

  • Kunze E, Firing E, Hummon J M, Chereskin T K, Thurnherr A M. 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. Journal of Physical Oceanography, 36(8): 1553–1576.

    Article  Google Scholar 

  • Lagerloef G S E, Mitchum G T, Lukas R B, Niiler P P. 1999. Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. Journal of Geophysical Research: Oceans, 104(C10): 23 313–23 326.

    Article  Google Scholar 

  • Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4): 363–403.

    Article  Google Scholar 

  • Large W G, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11(3): 324–336.

    Article  Google Scholar 

  • Large W G, Pond S. 1982. Sensible and latent heat flux measurements over the ocean. Journal of Physical Oceanography, 12(5): 464–482.

    Article  Google Scholar 

  • Large W G, Yeager S G. 2004. Diurnal to Decadal Global Forcing for Ocean and Sea-Ice Models: the Data Sets and Flux Climatologies. Technical Report TN-460+STR. NCAR, Boulder, CO.

    Google Scholar 

  • Liu C Y, Fang L Y, Köhl A, Liu Z Y, Smyth W D, Wang F. 2019a. The subsurface mode tropical instability waves in the equatorial Pacific Ocean and their impacts on shear and mixing. Geophysical Research Letters, 46(21): 12 270–12 278.

    Article  Google Scholar 

  • Liu C Y, Köhl A, Liu Z Y, Wang F, Stammer D. 2016. Deep-reaching thermocline mixing in the equatorial pacific cold tongue. Nature Communications, 7(1): 11576.

    Article  Google Scholar 

  • Liu C Y, Köhl A, Stammer D. 2012. Adjoint-based estimation of eddy-induced tracer mixing parameters in the global ocean. Journal of Physical Oceanography, 42(7): 1 186–1 206.

    Article  Google Scholar 

  • Liu C Y, Wang X W, Köhl A, Wang F, Liu Z Y. 2019b. The northeast-southwest oscillating equatorial mode of the tropical instability wave and its impact on equatorial mixing. Geophysical Research Letters, 46(1): 218–225.

    Article  Google Scholar 

  • Liu D N, Wang F, Zhu J, Wang D X, Wang J N, Xie Q, Shu Y Q. 2020. Impact of assimilation of moored velocity data on low-frequency current estimation in northwestern tropical Pacific. Journal of Geophysical Research: Oceans, 125(9): e2019JC015829, https://doi.org/10.1029/2019JC015829.

    Google Scholar 

  • Liu D N, Zhu J, Shu Y Q, Wang D X, Wang W Q, Cai S Q. 2018. Model-based assessment of a Northwestern Tropical Pacific moored array to monitor intraseasonal variability. Ocean Modelling, 126: 1–12, https://doi.org/10.1016/j.ocemod.2018.04.001.

    Article  Google Scholar 

  • Liu W T, Xie X, Polito P S, Xie S P, Hashizume H. 2000. Atmospheric manifestation of tropical instability wave observed by QuikSCAT and Tropical Rain Measuring Mission. Geophysical Research Letters, 27(16): 2 545–2 548.

    Article  Google Scholar 

  • Locarnini R A, Mishonov A V, Antonov J I, Boyer T P, Garcia H E, Baranova O K, Zweng M M, Paver C R, Reagan J R, Johnson D R, Hamilton M, Seidov D. 2013. World Ocean Atlas 2013, Volume 1: Temperature. NOAA Atlas NESDIS 73, NOAA, Silver Spring, MD.

    Google Scholar 

  • Ma X H, Jing Z, Chang P, Liu X, Montuoro R, Small J R, Bryan F O, Greatbatch R J, Brandt P, Wu D X, Lin X P, Wu L X. 2016. Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535(7613): 533–537.

    Article  Google Scholar 

  • MacKinnon J A, Alford M H, Sun O, Pinkel R, Zhao Z X, Klymak J. 2013. Parametric subharmonic instability of the internal tide at 29°N. Journal of Physical Oceanography, 43(1): 17–28.

    Article  Google Scholar 

  • MacKinnon J A, Winters K B. 2005. Subtropical catastrophe: significant loss of low-mode tidal energy at 28.9°. Geophysical Research Letters, 32(15): L15605.

    Article  Google Scholar 

  • Marshall J, Hill C, Perelman L, Adcroft A. 1997. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans, 102(C3): 5 733–5 752.

    Article  Google Scholar 

  • Mazloff M R, Heimbach P, Wunsch C. 2010. An eddy-permitting Southern Ocean State Estimate. Journal of Physical Oceanography, 40(5): 880–899.

    Article  Google Scholar 

  • Menemenlis D, Campin J M, Heimbach P, Hill C, Lee T, Nguyen A, Schodlok M, Zhang H. 2008. ECCO2: High Resolution Global Ocean and Sea Ice Data Synthesis. Mercator Ocean Quarterly Newsletter, 31: 13–21, https://www.mercator-ocean.fr/wp-content/uploads/2015/06/lettre_31_en.pdf. Accessed on 2021-06-23.

    Google Scholar 

  • Menemenlis D, Fukumori I, Lee T. 2005. Using Green’s functions to calibrate an ocean general circulation model. Mon Weather Review, 133(5): 1 224–1 240.

    Article  Google Scholar 

  • Moum J N, Lien R C, Perlin A, Nash J D, Gregg M C, Wiles P J. 2009. Sea surface cooling at the equator by subsurface mixing in tropical instability waves. Nature Geoscience, 2(11): 761–765.

    Article  Google Scholar 

  • Peters H, Gregg M C, Sanford T B. 1991. Equatorial and off-equatorial fine-scale and large-scale shear variability at 140°W. Journal of Geophysical Research: Oceans, 96(C6): 16 913–16 928.

    Article  Google Scholar 

  • Pezzi L, Caltabiano A, Challenor P. 2006. Satellite observations of the Pacific tropical instability wave characteristics and their interannual variability. International Journal of Remote Sensing, 27(8): 1 581–1 599.

    Article  Google Scholar 

  • Qiu B, Chen S M, Carter G S. 2012. Time-varying parametric subharmonic instability from repeat CTD surveys in the northwestern Pacific Ocean. Journal of Geophysical Research: Oceans, 117(C9): C09012.

    Article  Google Scholar 

  • Qu T D, Du Y, Sasaki H. 2006. South China Sea throughflow: a heat and freshwater conveyor. Geophysical Research Letters, 33(23): L23617.

    Article  Google Scholar 

  • Richards K J, Kashino Y, Natarov A, Firing E. 2012. Mixing in the western equatorial Pacific and its modulation by ENSO. Geophysical Research Letters, 39(2): L02604.

    Article  Google Scholar 

  • Romanova V, Köhl A, Stammer D, Klepp C, Andersson ABakan S. 2010. Sea surface freshwater flux estimates from GECCO, HOAPS and NCEP. Tellus A: Dynamic Meteorology and Oceanography, 62(4): 435–452.

    Article  Google Scholar 

  • Seo H, Miller A J, Roads J O. 2007. The Scripps Coupled Ocean-Atmosphere Regional (SCOAR) model, with applications in the eastern Pacific sector. Journal of Climate, 20(3): 381–402.

    Article  Google Scholar 

  • Simmons H L. 2008. Spectral modification and geographic redistribution of the semi-diurnal internal tide. Ocean Modelling, 21(3–4): 126–138.

    Article  Google Scholar 

  • Small R J, Bacmeister J, Bailey D, Baker A, Bishop S, Bryan F, Caron J, Dennis J, Gent P, Hsu H M, Jochum M, Lawrence D, Muñoz E, DiNezio P, Scheitlin T, Tomas R, Tribbia J, Tseng Y H, Vertenstein M. 2014. A new synoptic scale resolving global climate simulation using the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 6(4): 1 065–1 094.

    Article  Google Scholar 

  • Small R J, Richards K J, Xie S P, Dutrieux P, Miyama T. 2009. Damping of Tropical Instability Waves caused by the action of surface currents on stress. Journal of Geophysical Research: Oceans, 114(C4): C04009.

    Article  Google Scholar 

  • Stammer D, Ueyoshi K, Köhl A, Large W G, Josey S A, Wunsch C. 2004. Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation. Journal of Geophysical Research: Oceans, 109(C5): C05023.

    Article  Google Scholar 

  • Stammer D, Wunsch C, Giering R, Eckert C, Heimbach P, Marotzke J, Adcroft A, Hill C N, Marshall J. 2002. Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. Journal of Geophysical Research: Oceans, 107(C9): 1–1-1-27.

    Article  Google Scholar 

  • Su Z, Wang J B, Klein P, Thompson A F, Menemenlis D. 2018. Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9(1): 775, https://doi.org/10.1038/s41467-018-02983-w.

    Article  Google Scholar 

  • Thum N, Esbensen S K, Chelton D B, McPhaden M J. 2002. Air-sea heat exchange along the northern sea surface temperature front in the eastern tropical Pacific. Journal of Climate, 15(23): 3 361–3 378.

    Article  Google Scholar 

  • Verdy A, Cornuelle B, Mazloff M R, Rudnick D L. 2017. Estimation of the Tropical Pacific Ocean State 2010–13. Journal of Atmospheric and Oceanic Technology, 34(7): 1 501–1 517.

    Article  Google Scholar 

  • Verdy A, Mazloff M R. 2017. A data assimilating model for estimating Southern Ocean biogeochemistry. Journal of Geophysical Research: Oceans, 122(9): 6 968–6 988.

    Article  Google Scholar 

  • Verdy A, Mazloff M R, Cornuelle B D, Kim S Y. 2014. Wind-driven sea level variability on the California coast: an adjoint sensitivity analysis. Journal of Physical Oceanography, 44(1): 297–318.

    Article  Google Scholar 

  • Wei Y Z, Kang X B, Pei Y H. 2018. An empirical tropical instability wave-induced wind stress model in the equatorial Pacific and its incorporation into the ocean model. Atmosphere -Ocean, 56(5): 350–361.

    Article  Google Scholar 

  • Wei Y Z, Pei Y H, Kang X B. 2019. Assessing feedback of tropical instability wave-induced wind stress perturbations in the Equatorial Pacific. International Journal of Climatology, 39(3): 1 634–1 643.

    Article  Google Scholar 

  • Yuan D L, Zhou H, Zhao X. 2013. Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean dipole through the Indonesian throughflow. Journal of Climate, 26(9): 2 845–2 861.

    Article  Google Scholar 

  • Zaba K D, Rudnick D L, Cornuelle B D, Gopalakrishnan G, Mazloff M R. 2018. Annual and interannual variability in the California current system: comparison of an ocean state estimate with a network of underwater gliders. Journal of Physical Oceanography, 48(12): 2 965–2 988.

    Article  Google Scholar 

  • Zhang G J, McPhaden M J. 1995. The relationship between sea surface temperature and latent heat flux in the equatorial Pacific. Journal of Climate, 8(3): 589–605.

    Article  Google Scholar 

  • Zhang H, Menemenlis D, Fenty I. 2018. ECCO LLC270 ocean-ice state estimate, https://dspace.mit.edu/handle/1721.1/119821. Accessed on 2021-06-23.

  • Zhang R H. 2014. Effects of tropical instability wave (TIW)-induced surface wind feedback in the tropical Pacific Ocean. Climate Dynamics, 42(1–2): 467–485.

    Article  Google Scholar 

  • Zhang R H. 2016. A modulating effect of tropical instability wave (TIW)-induced surface wind feedback in a hybrid coupled model of the tropical Pacific. Journal of Geophysical Research: Oceans, 121(10): 7 326–7 353.

    Article  Google Scholar 

  • Zhang R H, Busalacchi A J. 2008. Rectified effects of tropical instability wave (TIW)-induced atmospheric wind feedback in the tropical Pacific. Geophysical Research Letters, 35(5): L05608.

    Article  Google Scholar 

  • Zhu X H, Kaneko A, Gohda N, Inaba H, Kutsuwada K, Radenac M H. 1998. Observation of mixed Rossby-gravity waves in the western equatorial Pacific. Journal of Oceanography, 54(2): 133–141.

    Article  Google Scholar 

  • Zweng M M, Reagan J R, Antonov J I, Locarnini R A, Mishonov A V, Boyer T P, Garcia H E, Baranova O K, Johnson D R, Seidov D, Biddle M M. 2013. World Ocean Atlas 2013, Volume 2: Salinity. NOAA Atlas NESDIS 74, NOAA, Silver Spring, MD.

    Google Scholar 

Download references

Acknowledgment

The simulation work was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1A. We are grateful to two anonymous reviewers for their very helpful comments and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanyu Liu.

Additional information

Supported by the National Key R&D Program of China (No. 2016YFC1401703), the Strategic Priority Research Program of CAS (No. XDB42000000), the Key Research Program of Frontier Sciences of CAS (No. QYZDB-SSW-DQC030), the National Natural Science Foundation of China (Nos. 41976012, 41730534, 41806015, Y72143101B), and the Aoshan Talents Program by the QNML (No. 2017ASTCPES03)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, C., Köhl, A. et al. The adjoint-based Two Oceans One Sea State Estimate (TOOSSE). J. Ocean. Limnol. 40, 1–21 (2022). https://doi.org/10.1007/s00343-021-0439-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-0439-9

Keyword

Navigation