Skip to main content
Log in

Affinities of freshwater “Chantransia” stage algae (Rhodophyta) from China based on molecular and morphological analyses

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Twelve putative “Chantransia” isolates were collected from six locations across Hubei, Shanxi, Guizhou, and Henan Provinces in China. Their morphological characters were evaluated via the Ward’s method of hierarchical cluster analysis in SPSS software to classify phylogenetic relationships among the isolates. The morphological data revealed that isolate HN31 (called group “MALL”) was distinct from the other specimens being macroscopic with large vegetative cells and monosporangia (>20 µm in diameter). The 11 other isolates were grouped into three clusters, corresponding to the species Audouinella tenella, A. hermannii, and A. pygmaea. The morphological “Chantransia” stage of the species, reportedly belonging to the orders Batrachospermales, Thoreales, and the phylogenetically distant genus Audouinella, are very similar, resulting in the difficulty to distinguish them based just on morphology. Therefore, molecular analysis of rbcL, UPA, and COI-5P was conducted to infer the phylogenetic position of all isolates in this study. All “A. tenella” and “A. hermannii” sequences belong to order Batrachospermales, while the isolate HN31 was the “Chantransia” of Thorea hispida. The six other specimens varied morphologically, but they were within the circumscription of “A. pygmaea”. All three molecular markers show that all “pygmaea” isolates also represent the “Chantransia” of T. hispida. Furthermore, results from this investigation proposed a new species—Sheathia qinyuanensis, corresponding to the isolates QY1 and QY2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available on request from the corresponding author (email: xiesl@sxu.edu.cn).

References

  • Chen L, Feng J, Han X J, Xie S L. 2014. Investigation of a freshwater acrochaetioid alga (Rhodophyta) with molecular and morphological methods. Nordic Journal of Botany, 32(5): 529–535, https://doi.org/10.1111/njb.00407.

    Article  Google Scholar 

  • Chiasson W B, Johanson K G, Sherwood A R, Vis M L. 2007. Phylogenetic affinities of form taxon Chantransia pygmaea (Rhodophyta) specimens from the Hawaiian Islands. Phycologia, 46(3): 257–262, https://doi.org/10.2216/06-79.1.

    Article  Google Scholar 

  • Chiasson W B, Sabo N J, Vis M L. 2005. Affinities of freshwater putative chantransia stages (Rhodophyta) from molecular and morphological data. Phycologia, 44(2): 163–168, https://doi.org/10.2216/0031-8884(2005)44[163:aofpcs]2.0.co;2.

    Article  Google Scholar 

  • Clarkston B E, Saunders G W. 2010. A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of Euthora timburtonii sp. nov. Botany, 88(2): 119–131, https://doi.org/10.1139/b09-101.

    Article  Google Scholar 

  • Entwisle T J, Vis M L, Chiasson W B, Necchi O Jr, Sherwood A R. 2009. Systematics of the Batrachospermales (Rhodophyta)—a synthesis. Journal of Phycology, 45(3): 704–715, https://doi.org/10.1111/j.1529-8817.2009.00686.x.

    Article  Google Scholar 

  • Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17(6): 368–376, https://doi.org/10.1007/bf01734359.

    Article  Google Scholar 

  • George D, Mallery P. 2010. SPSS for Windows Step By Step: A Simple Guide and Reference, 17.0 Update. 10th edn. Allyn & Bacon, Boston. 386p.

    Google Scholar 

  • Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52(5): 696–704, https://doi.org/10.1080/10635150390235520.

    Article  Google Scholar 

  • Guiry M D, Guiry G M. 2020. World-wide electronic publication, National University of Ireland, Galway. AlgaeBase, http://www.algaebase.org. Accessed on 2020-01-13.

  • Han X J. 2012. Phylogenetic Relationship of Audouinella Based on Gene Sequences. Master’s dissertation, Shanxi University. 65p. (in Chinese with English abstract)

  • Harper J, Saunders G. 1998. A molecular systematic investigation of the Acrochaetiales (Florideophycidae, Rhodophyta) and related taxa based on nuclear small-subunit ribosomal DNA sequence data. European Journal of Phycology, 33(3): 221–229, https://doi.org/10.1080/09670269810001736723.

    Article  Google Scholar 

  • Hind K R, Saunders G W. 2013. A molecular phylogenetic study of the Tribe Corallineae (Corallinales, Rhodophyta) with an assessment of genus-level taxonomic features and descriptions of novel genera. Journal of Phycology, 49(1): 103–114, https://doi.org/10.1111/jpy.12019.

    Article  Google Scholar 

  • Jao C C. 1941. Studies on the freshwater algae of China. VIII. A preliminary account of the Chinese freshwater rhodophyceae. Sinensia, 12: 245–290.

    Google Scholar 

  • Ji L, Feng J, Nan F R, Chen L, Hu B F, Xie S L. 2017. Evaluating DNA barcode markers for freshwater red algae: a case study using family Batrachospermaceae. Acta Hydrobiologica Sinica, 41(3): 643–651, https://doi.org/10.7541/2017.82. (in Chinese with English abstract)

    Google Scholar 

  • Ji L. 2013. Molecular Phylogenetics of Batrachospermum Roth (Rhodophyta) of China. Doctoral dissertation, Shanxi University. 197p. (in Chinese with English abstract)

  • Johnston E T, Dixon K R, West J A, Buhari N, Vis M L. 2018. Three gene phylogeny of the Thoreales (Rhodophyta) reveals high species diversity. Journal of Phycology, 54(2): 159–170, https://doi.org/10.1111/jpy.12618.

    Article  Google Scholar 

  • Kaczmarczyk D, Sheath R G. 1992. Pigment content and carbon to nitrogen ratios of freshwater red algae growing at different light levels. Japanese Journal of Phycology, 40: 279–282.

    Google Scholar 

  • Kumano S. 2002. Freshwater Red Algae of the World. Biopress Ltd, Bristol. 375p.

    Google Scholar 

  • Li Q, Ji L, Xie S L. 2010. Phylogenetic analysis of Batrachospemales (Florideophyceae, Rhodophyta) based on chloroplast rbcL sequences. Acta Hydrobiologica Sinica, 36(1): 20–28, https://doi.org/10.3724/spj.1035.2010.00020.

    Article  Google Scholar 

  • Nan F R, Feng J, Han X J, Lv J P, Liu Q, Xie S L. 2016. Molecular identification of Audouinella-like species (Rhodophyta) from China based on three short DNA fragments. Phytotaxa, 246(2): 107–119, https://doi.org/10.11646/phytotaxa.246.2.2.

    Article  Google Scholar 

  • Nan F R, Feng J, Xie S L. 2014. Phylogenetic relationship of genus Kumanoa (Batrachospermales, Rhodophyta) based on chloroplast UPA genes. Bulletin of Botanical Research, 34(1): 584–591, https://doi.org/10.7525/jissn.1673-5102.2014.05.002.

    Google Scholar 

  • Necchi O Jr, Agostinho D C, Vis M L. 2018. Revision of Batrachospermum section Virescentia (Batrachospermales, Rhodophyta) with the establishment of the new genus, Virescentia stat. nov.. Cryptogamie Algologie, 39(3): 313–338, https://doi.org/10.7872/crya/v39.iss3.2018.313.

    Article  Google Scholar 

  • Necchi O Jr, Filho A G, Paiano M O. 2019. Revision of Batrachospermum sections Acarposporophytum and Aristata (Batrachospermales, Rhodophyta) with the establishment of the new genera Acarposporophycos and Visia. Phytotaxa, 395(2): 51–65, https://doi.org/10.11646/phytotaxa.395.2.1.

    Article  Google Scholar 

  • Necchi O Jr, Fo A S G, Paiano M O, Vis M L. 2019. Revision of Batrachospermum section Macrospora (Batrachospermales, Rhodophyta) with the establishment of the new genus Montagnia. Phycologia, 58(6): 582–591, https://doi.org/10.1080/00318884.2019.1624143.

    Article  Google Scholar 

  • Necchi O Jr, Oliveira M C 2011. Phylogenetic affinities of “Chantransia” stages in members of the Batrachospermales and Thoreales (Rhodophyta). Journal of Phycology, 47(3): 680–686, https://doi.org/10.1111/j.1529-8817.2011.00997.x.

    Article  Google Scholar 

  • Necchi O Jr, Sheath R G, Cole K M. 1993a. Systematics of freshwater Audouinella (Acrochaetiacees, Rhodophyta) in North America. 1. The reddish species. Algological Studies, 70: 11–28.

    Google Scholar 

  • Necchi O Jr, Sheath R G, Cole K M. 1993b. Systematics of freshwater Audouinella (Acrochaetiacees, Rhodophyta) in North America. 2. The bluish species. Algological Studies, 71: 13–21.

    Google Scholar 

  • Necchi O Jr, Zucchi M R. 1995. Systematics and distribution of freshwater Audouinella (Acrochaetiaceae, Rhodophyta) in Brazil. European Journal of Phycology, 30(3): 209–218, https://doi.org/10.1080/09670269500650991.

    Article  Google Scholar 

  • Necchi O Jr, Zucchi M R. 1997. Audouinella macrospora (Acrochaetiaceae, Rhodophyta) is the chantransia stage of Batrachospermum (Batrachospermaceae). Phycologia, 36(3): 220–224, https://doi.org/10.2216/i0031-8884-36-3-220.1.

    Article  Google Scholar 

  • Posada D, Buckley T R. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53(5): 793–808, https://doi.org/10.1080/10635150490522304.

    Article  Google Scholar 

  • Pueschel C M, Saunders G W, West J A. 2001. Affinities of the freshwater red alga Audouinella macrospora (Florideophyceae, Rhodophyta) and related forms based on SSU rRNA gene sequence analysis and pit plug ultrastructure. Journal of Phycology, 36(2): 433–440, https://doi.org/10.1046/j.1529-8817.2000.99173.x.

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck J P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12): 1 572–1 574, https://doi.org/10.1093/bioinformatics/btg180.

    Article  Google Scholar 

  • Salomaki E D, Kwandrans J, Eloranta P, Vis M L. 2014. Molecular and morphological evidence for Sheathia gen. nov. (Batrachospermales, Rhodophyta) and three new species. Journal of Phycology, 50(3): 526–542, https://doi.org/10.1111/jpy.12179.

    Article  Google Scholar 

  • Saunders G W. 1993. Gel purification of red algal genomic DNA: an inexpensive and rapid method for the isolation of polymerase chain reaction-friendly DNA. Journal of Phycology, 29(2): 251–254, https://doi.org/10.1111/j.0022-3646.1993.00251.x.

    Article  Google Scholar 

  • Saunders G W. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462): 1 879–1 888, https://doi.org/10.1098/rstb.2005.1719.

    Article  Google Scholar 

  • Sheath R G. 1984. The biology of freshwater red algae. In: Round F E, Chapman D J eds. Progress in Phycological Research, vol. 3. Biopress Ltd, Bristol, UK. p.89–157.

    Google Scholar 

  • Sherwood A R, Presting G G. 2007. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. Journal of Phycology, 43(3): 605–608, https://doi.org/10.1111/j.1529-8817.2007.00341.x.

    Article  Google Scholar 

  • Shi Z X. 2006. Flora Algarum Sinicarum Aquae Dulci, Tomus XIII, Rhodophyta, Phaeophyta. Science Press, Beijing, China. p.1–77. (in Chinese)

    Google Scholar 

  • Skuja H. 1934. Untersuchungen über die Rhodophyceen des Süsswassers. Botanisches Centralblatt, Beiheft, 52: 173–192.

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2 731–2 739, https://doi.org/10.1093/molbev/msr121.

    Article  Google Scholar 

  • Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24): 4 876–4 882, https://doi.org/10.1093/nar/25.24.4876.

    Article  Google Scholar 

  • Vis M L, Entwisle T J, West J A, Ott F D. 2006. Ptilothamnion richardsii (Rhodophyta) is a Chantransia stage of Batrachospermum. European Journal of Phycology, 41(1): 125–130, https://doi.org/10.1080/09670260500418504.

    Google Scholar 

  • Vis M L, Necchi O Jr, Chiasson W B, Entwisle T J. 2012. Molecular phylogeny of the genus Kumanoa (Batrachospermales, Rhodophyta). Journal of Phycology, 48(3): 750–758, https://doi.org/10.1111/j.1529-8817.2012.01141.x.

    Article  Google Scholar 

  • Vis M L, Saunders G W, Sheath R G, Dunse K, Entwisle T J. 1998. Phylogeny of the Batrachospermales (Rhodophyta) inferred from rbcL and 18S ribosomal DNA gene sequences. Journal of Phycology, 34(2): 341–350, https://doi.org/10.1046/j.1529-8817.1998.340341.x.

    Article  Google Scholar 

  • Vis M L, Sheath R G. 1997. Biogeography of Batrachospermum gelatinosum (Batrachospermales, Rhodophyta) in North America based on molecular and morphological data. Journal of Phycology, 33(3): 520–526, https://doi.org/10.1111/j.0022-3646.1997.00520.x.

    Article  Google Scholar 

  • Xie S L, Shi Z X. 2003. Thorea (Thoreaceae, Rhodophyta) in China. Acta Hydrobiologica Sinica, 27(6): 631–634. (in Chinese with English abstract)

    Google Scholar 

  • Xie S L. 2001. Studies on Batrachospermales (Rhodophyta) from China. Doctoral dissertation, Institute of Hydrobiology, Chinese Academy of Sciences. (in Chinese with English abstract)

  • Zucchi M R, Necchi O Jr. 2003. Blue-greenish acrochaetioid algae in freshwater habitats are “Chantransia” stages of Batrachospermales sensu lato (Rhodophyta). Cryptogamie Algologie, 24(2): 117–131.

    Google Scholar 

Download references

Acknowledgment

Dr. S. James (University of California, Davis) is acknowledged for the English editing. We sincerely thank Prof. LIU Guoxiang from Institute of Hydrobiology, Chinese Academy of Sciences for providing samples. Dr. ZHU Huan from Institute of Hydrobiology, Chinese Academy of Sciences is acknowledged for providing information on the sample collecting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulian Xie.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 31670208, 41871037 to XIE Shulian, and No. 31800172 to NAN Fangru) and the Fund for Shanxi “1331 Project” Key Innovative Research Team

Electronic supplementary material

343_2020_114_MOESM1_ESM.doc

Affinities of freshwater “Chantransia” stage algae (Rhodophyta) from China based on molecular and morphological analyses

343_2020_114_MOESM2_ESM.xls

Table S2. Pairwise distance (lower-left matrix) and number of nucleotide variance (upper-right matrix) of rbcL sequence among the taxa in this study.

343_2020_114_MOESM3_ESM.xls

Table S3. Pairwise distance (lower-left matrix) and number of nucleotide variance (upper-right matrix) of UPA sequence among the taxa in this study.

343_2020_114_MOESM4_ESM.xls

Table S4. Pairwise distance (lower-left matrix) and number of nucleotide variance (upper-right matrix) of COI-5P sequence among the taxa in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Nan, F., Feng, J. et al. Affinities of freshwater “Chantransia” stage algae (Rhodophyta) from China based on molecular and morphological analyses. J. Ocean. Limnol. 39, 1063–1076 (2021). https://doi.org/10.1007/s00343-020-0114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-0114-6

Keyword

Navigation