Skip to main content
Log in

Biosynthesis of phycocyanobilin in recombinant Escherichia coli

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The recombinant expression of phycocyanobilin (PCB) was carried out in Escherichia coli, and the best fermentation conditions of recombinant E. coli biosynthesized PCB are optimized in the response surface methodology to improve PCB production. The recombinant PCB is extracted, isolated, and purified by methanol and chloroform extraction. Recombinant PCB is validated in UV-vis spectroscopy, high-pressure liquid chromatography, and mass spectrometry. In addition, the anti-oxidant activities of the recombinant PCB are determined. The best induction conditions that optimized by Design Expert 8.0 software include: lactose concentration 4 mmol/L, induction temperature 24.69°C, induction time 4.6 h, and induction duration 13.57 h, under which the PCB expression level reached approximately 13 mg PCB/L, which is more than four times of previously reported 3 mg PCB/L. The maximum absorption peak of the recombinant PCB is located at 680 nm with a high fluorescence intensity of 470 nm. The recombinant PCB has a good ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data supporting the findings of this study are shown in this article. Otherwise, please contact the author for more information.

References

  • Adir N. 2005. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynthesis Research, 85(1): 15–32.

    Article  Google Scholar 

  • Alvey R M, Biswas A, Schluchter W M, Bryant D A. 2011. Attachment of noncognate chromophores to CpcA of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 by heterologous expression in Escherichia coli. Biochemistry, 50(22): 4 890–4 902.

    Article  Google Scholar 

  • Basdeo S A, Campbell N K, Sullivan L M, Flood B, Creagh E M, Mantle T J, Fletcher J M, Dunne A. 2016. Suppression of human alloreactive T cells by linear tetrapyrroles; relevance for transplantation. Translational Research 178: 81–94.e2.

    Article  Google Scholar 

  • Benedetti S, Benvenuti F, Scoglio S, Canestrari F. 2010. Oxygen radical absorbance capacity of phycocyanin and phycocyanobilin from the food supplement Aphanizomenon flos - aquae. Journal of Medicinal Food, 13(1): 223–227.

    Article  Google Scholar 

  • Bennett A, Bogorad L. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2): 419–435.

    Article  Google Scholar 

  • Beuhler R J, Pierce R C, Friedman L, Siegelman H W. 1976. Cleavage of phycocyanobilin from C-phycocyanin. Separation and mass spectral identification of the products. Journal of Biological Chemistry, 251(8): 2 405–2 411.

    Google Scholar 

  • Blois M S. 1958. Antioxidant determinations by the use of a stable free radical. Nature, 181(4617): 1 199–1 200.

    Article  Google Scholar 

  • Carra P Ó, Heocha C Ó. 1966. Bilins released from algae and biliproteins by methanolic extraction. Phytochemistry, 5(5): 993–997.

    Article  Google Scholar 

  • De Montellano P R O. 2000. The mechanism of heme oxygenase. Current Opinion in Chemical Biology, 4(2): 221–227.

    Article  Google Scholar 

  • Frankenberg N, Lagarias J C. 2003. Phycocyanobilin: ferredoxin oxidoreductase of Anabaena sp. PCC 7120 biochemical and spectroscopic characterization. Journal of Biological Chemistry, 278(11): 9 219–9 226.

    Google Scholar 

  • Gambetta G A, Lagarias J C. 2001. Genetic engineering of phytochrome biosynthesis in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 98(19): 10 566–10 571.

    Article  Google Scholar 

  • Ge B S, Chen Y, Yu Q, Lin X J, Li J Q, Qin S. 2018. Regulation of the heme biosynthetic pathway for combinational biosynthesis of phycocyanobilin in Escherichia coli. Process Biochemistry, 71: 23–30.

    Article  Google Scholar 

  • Ge B S, Li Y, Sun H X, Zhang S, Hu P J, Qin S, Huang F. 2013. Combinational biosynthesis of phycocyanobilin using genetically-engineered Escherichia coli. Biotechnology Letters, 35(5): 689–693.

    Article  Google Scholar 

  • Glazer A N, Fang S. 1973. Chromophore content of blue-green algal phycobiliproteins. Journal of Biological Chemistry, 248(2): 659–662.

    Google Scholar 

  • Jobe A, Bourgeois S. 1972. Lac repressor-operator interaction: VI. The natural inducer of the lac operon. Journal of Molecular Biology, 69(3): 397–408.

    Article  Google Scholar 

  • Lee K M, Gilmore D F. 2006. Statistical experimental design for bioprocess modeling and optimization analysis. Applied Biochemistry and Biotechnology, 135(2): 101–115.

    Article  Google Scholar 

  • Müller-Hill B, Rickenberg H V, Wallenfels K. 1964. Specificity of the induction of the enzymes of the lac operon in Escherichia coli. Journal of Molecular Biology, 10(2): 303–318.

    Article  Google Scholar 

  • MacColl R. 1998. Cyanobacterial phycobilisomes. Journal of Structural Biology, 124(2–3): 311–334.

    Article  Google Scholar 

  • Marín-Prida J, Pavón-Fuentes N, Llópiz-Arzuaga A, Fernández-Massó J R, Delgado-Roche L, Mendoza-Marí Y, Santana S P, Cruz-Ramírez A, Valenzuela-Silva C, Nazábal-Gálvez M, Cintado-Benítez A, Pardo-Andreu G L, Polentarutti N, Riva F, Pentón-Arias E, Pentón-Rol G. 2013. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats. Toxicology and Applied Pharmacology, 272(1): 49–60.

    Article  Google Scholar 

  • McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Lok K, Porteous L, Prince E, Sonuga-Barke E, Warner J O, Stevenson J. 2007. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. The Lancet, 370(9598): 1 560–1 567.

    Article  Google Scholar 

  • Mccarty M F, Barroso-Aranda J, Contreras F. 2010a. NAPDH oxidase mediates glucolipotoxicity-induced beta cell dysfunction-clinical implications. Medical Hypotheses, 74(3): 596–600.

    Article  Google Scholar 

  • McCarty M F, Barroso-Aranda J, Contreras F. 2010b. Oral phycocyanobilin may diminish the pathogenicity of activated brain microglia in neurodegenerative disorders. Medical Hypotheses, 74(3): 601–605.

    Article  Google Scholar 

  • O’Carra P, Murphy R F, Killilea S D. 1980. The native forms of the phycobilin chromophores of algal biliproteins. A clarification. Biochemical Journal, 187(2): 303–309.

    Article  Google Scholar 

  • Qaiser H, Aslam F, Iftikhar S, Farooq A. 2018. Construction and recombinant expression of Pseudomonas aeruginosa truncated exotoxin A in Escherichia coli. Cellular and Molecular Biology, 64(1): 64–69.

    Article  Google Scholar 

  • Romay C, Armesto J, Remirez D, González R, Ledon N, García N L. 1998. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflammation Research, 47(1): 36–41.

    Article  Google Scholar 

  • Romay C, González R, Ledón N, Remirez D, Rimbau V. 2003. C-phycocyanin: a biliprotein with antioxidant, antiinflammatory and neuroprotective eff ects. Current Protein & Peptide Science, 4(3): 207–216.

    Article  Google Scholar 

  • Sotiroudis T G, Sotiroudis G T. 2013. Health aspects of Spirulina (Arthrospira) microalga food supplement. Journal of the Serbian Chemical Society, 78(3): 395–405.

    Article  Google Scholar 

  • Willows R D, Mayer S M, Foulk M S, DeLong A, Hanson K, Chory J, Beale S I. 2000. Phytobilin biosynthesis: the Synechocystis sp. PCC 6803 heme oxygenase-encoding ho1 gene complements a phytochrome-deficient Arabidopsis thaliana hy1 mutant. Plant Molecular Biology, 43(1): 113–120.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Lin or Song Qin.

Additional information

Supported by the National Natural Science Foundation of China (No. 41906109) and the Key Research and Development Program of Yantai (No. Y933021011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Li, W., Ge, B. et al. Biosynthesis of phycocyanobilin in recombinant Escherichia coli. J. Ocean. Limnol. 38, 529–538 (2020). https://doi.org/10.1007/s00343-019-9060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-9060-6

Keyword

Navigation