Skip to main content
Log in

Photobehaviors of the calanoid copepod Calanus sinicus from the Yellow Sea to visible and UV–B radiation as a function of wavelength and intensity

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The effects of wavelength–specific visible light, white light, and ultraviolet–B (UV–B, 280–315 nm) on selected behaviors, grazing rate, spawning rate, and hatching rate of the marine copepod Calanus sinicus collected from the Yellow Sea were studied. Calanus sinicus placed in a partitioned experimental system responded positively phototaxis to blue–cyan and yellow light but negatively to orange light and UV-B. No obvious dodge activity was found among C. sinicus irradiated with <0.005 mW/cm2 UV–B. Under 0.20, 0.30 and 0.50 mW/cm2 UV–B radiation, the lethal half times of individuals were 30.47, 2.86, and 1.96 h, respectively. Grazing of C. sinicus was restrained at >0.10 mW/cm2 UV–B, whereas yellow–red light stimulated grazing. Egg production rate was highest at a white–light intensity of 1.58 mW/cm2, with an average rate of 10.04 eggs/(female·d). These results are consistent with the observed phenomenon that C. sinicus in the Yellow Sea mostly spawn near dawn. Our results indicate that light intensity and spectrum are important factors affecting the diel vertical migration of C. sinicus under natural conditions in the Yellow Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anon. 1977. Study on plankton in China Seas. In: Anon ed. Scientific Reports of “Comprehensive Oceanography Expedition in China Seas”, Ocean Res. Off. Press, Tianjun, 8: 1–159. (in Chinese)

    Google Scholar 

  • Araseth K A, Schram T A. 1999. Wavelength–specific behaviour in Lepeophtheirus salmonis and Calanus finmarchicus to ultraviolet and visible light in laboratory experiments (Crustacea: Copepoda). Marine Ecology Progress Series, 186: 211–217.

    Article  Google Scholar 

  • Atkinson A, Ward P, Murphy E J. 1996. Diel periodicity of subantarctic copepods: relationships between vertical migration, gut fullness and gut evacuation rate. Journal of Plankton Research, 18(8): 1 387–1 405.

    Article  Google Scholar 

  • Boden B P, Kampa E M. 1967. The influence of natural light on the vertical migrations of an animal community in the sea. Symposia of the Zoological Society of London, 19: 15–26.

    Google Scholar 

  • Buchanan C, Haney J F. 1980. Vertical migration of zooplankton in the Arctic. A test of the environmental controls. In: Kerfoot W C ed. Evolution and ecology of Zooplankton communities. New Hampshire: University Press of New England, 3: 66–79.

    Google Scholar 

  • Chen Q C. 1964. A study of ratio and the breeding periods, variation in sex in size of Calanus sinicus brodsky. Oceanologia et Limnologia Sinica, 6(3): 272–287. (in Chinese with English Abstract)

    Google Scholar 

  • Clarke G L. 1933. Diurnal migration of plankton in the Gulf of Maine and its correlation with changes in submarine irradiation. Biological Bulletin, 65(3): 402–436.

    Article  Google Scholar 

  • Cullen J J, Neale P J. 1994. Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynthesis Research, 39(3): 303–320.

    Article  Google Scholar 

  • Daan N, Ringelberg J. 1969. Further studies on the positive and negative phototactic reaction of Daphnia magna Straus. Netherlands Journal of Zoology, 19(4): 525–540.

    Article  Google Scholar 

  • Dey D B, Damkaer D M, Heron G A. 1988. UV–B dose/doserate responses of seasonally abundant copepods of Puget Sound. Oecologia, 76(3): 321–329.

    Article  Google Scholar 

  • Ewald W F. 1910. Über Orientierung, Lokomotion und Lichtreaktionen einiger Cladoceren und deren Bedeutung für die Theorie der Tropismen. Biologisches Zentralblatt, 30: 1–16.

    Google Scholar 

  • Farquhar G D, Roderick M L. 2003. Atmospheric science: Pinatubo, diffuse light, and the carbon cycle. Science, 299(5615): 1 997–1 998.

    Article  Google Scholar 

  • Forward R B Jr. 1988. Diel vertical migration: zooplankton photobiology and behaviour. Oceanography and Marine Biology, An Annual Review, 26: 361–393.

    Google Scholar 

  • Frost B W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnology and Oceanography, 17(6): 805–815.

    Article  Google Scholar 

  • Haney J F, Craggy A, Kimball K, Weeks F. 1990. Light control of evening vertical migrations by Chaoborus punctipennis larvae. Limnology and Oceanography, 35(5): 1 068–1 078.

    Article  Google Scholar 

  • Huang C, Uye S, Onbé T. 1993. Geographic distribution, seasonal life cycle, biomass and production of a planktonic copepod Calarms sinicus in the inland Sea of Japan and its neighboring Pacific Ocean. Journal of Plankton Research, 15(11): 1 229–1 246.

    Article  Google Scholar 

  • Jékely G, Colombelli J, Hausen H, Guy K, Stelzer E, Nédélec F, Arendt D. 2008. Mechanism of phototaxis in marine zooplankton. Nature, 456(7220): 395–399.

    Article  Google Scholar 

  • Jerlov N G. 1950. Ultra–violet radiation in the sea. Nature, 166(4211): 111–112.

    Article  Google Scholar 

  • Karanas J J, Van Dyke H, Worrest R C. 1979. Midultraviolet (UV–B) sensitivity of Acartia clausii Giesbrecht (Copepoda). Limnology and Oceanography, 24(6): 1 104–1 116.

    Article  Google Scholar 

  • Kerr J B, McElroy C T. 1993. Evidence for large upward trends of ultraviolet–B radiation linked to ozone depletion. Science, 262(5136): 1 032–1 034.

    Article  Google Scholar 

  • Kidachi T. 1979a. Systematics of Calanus in the Japanese waters, with special reference to morphological differentiations of Calanus in Sagami Bay, part 1. Aquabiology, 2. 9–15. (in Japanese)

    Google Scholar 

  • Kidachi T. 1979b. Systematics of Calanus in the Japanese waters, with special reference to morphological differentiations of Calanus in Sagami Bay, part 2. Aquabiology, 3. 25–31. (In Japanese)

    Google Scholar 

  • Klugh A B. 1929. The effect of the ultra–violet component of sunlight on certain marine organisms. Canadian Journal of Research, 1(1): 100–109.

    Google Scholar 

  • Leech D M, Williamson C E. 2001. In situ exposure to ultraviolet radiation alters the depth distribution of Daphnia. Limnology and Oceanography, 46(2): 416–420.

    Article  Google Scholar 

  • Li J, Sun S, Li C L, Zhang Z, Tao Z C. 2006. Effects of single and mixed diatom diets on the reproduction of copepod Calanus sinicus. Acta Hydrochimica et Hydrobiologica, 34 (1–2): 117–125.

    Article  Google Scholar 

  • Lin Y S, Li S. 1986. Laboratory survey on egg production of marine planktonic copepod Calanus sinicus in Xiamen Harbour. Journal of Xiamen University (Natural science), 25(1): 107–112. (in Chinese with English Abstract)

    Google Scholar 

  • Madronich S, Mckenzie R L, Caldwell M, Bjorn L O. 1995. Changes in ultraviolet–radiation reaching the Earth’s surface. Environmental Effects of Stratospheric Ozone Depletion, 1994 Update.

    Google Scholar 

  • Mostajir B, Demers S, De Mora S D, Belzile C, Chanut J P, Gosselin M, Roy S, Villegas P Z, Fauchot J, Bouchard J, Bird D, Monfort P, Levasseur M. 1999. Experimental test of the effect of ultraviolet–B radiation in a planktonic community. Limnology and Oceanography, 44(3): 586–596.

    Article  Google Scholar 

  • Piazena H, Perez–Rodrigues E, Häder D P, Lopez–Figueroa F. 2002. Penetration of solar radiation into the water column of the central subtropical Atlantic ocean–optical properties and possible biological consequences. Deep Sea Research Part II: Topical Studies in Oceanography, 49(17): 3 513–3 528.

    Article  Google Scholar 

  • Rhode S C, Pawlowski M, Tollrian R. 2001. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature, 412(6842): 69–72.

    Article  Google Scholar 

  • Ringelberg J. 1964. The positively phototactic reaction of Daphnia magna Straus: a contribution to the understanding of diurnal vertical migration. Netherlands Journal of Sea Research, 2(3): 319–406.

    Article  Google Scholar 

  • Ringelberg J. 1999. The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biological Reviews of the Cambridge Philosophical Society, 74(4): 397–423.

    Article  Google Scholar 

  • Russell F S. 1926. The vertical distribution of marine macroplankton. IV. The apparent importance of light intensity as a controlling factor in the behaviour of certain species in the Plymouth area. Journal of the Marine Biological Association of the UK, 14: 415–440.

    Google Scholar 

  • Russell F S. 1934. The vertical distribution of marine macroplankton. 12. Some observations on the vertical distribution of Calanus finmarchicus in relation to light intensity. Journal of the Marine Biological Association of the UK, 19: 569–584.

    Article  Google Scholar 

  • Schulyer Q, Sullivan K B. 1997. Light responses and diel migration of scyphomedusa Chrysaora quinquecirrha in mesocosms. Journal of Plankton Research, 19(10): 1 417–1 428.

    Article  Google Scholar 

  • Schulz H. 1928. Über die Bedeutung des Lichtes im Leben niederer Krebse. Zeitschrift für Vergleichende Physiologie, 7(3): 488–552.

    Article  Google Scholar 

  • Scott L C. 1995. Survival and sex ratios of the intertidal copepod, Tigriopus californicus, following ultraviolet–B (290–320 nm) radiation exposure. Marine Biology, 123(4): 799–804.

    Article  Google Scholar 

  • Smith K C, Macagno E R. 1990. UV photoreceptors in the compound eye of Daphnia magna (Crustacea, Branchiopoda). A fourth spectral class in single ommatidia. Journal of Comparative Physiology A, 166(5): 597–606.

    Google Scholar 

  • Smith R C, Prézelin B B, Baker K S, Bidigare R R, Boucher N P, Coley T, Karentz D, MacIntyre S, Matlick H, Menzies D. 1992. Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science, 255(5047): 952–959.

    Article  Google Scholar 

  • Speekmann C L, Bollens S M, Avent S R. 2000. The effect of ultraviolet radiation on the vertical distribution and mortality of estuarine zooplankton. Journal of Plankton Research, 22(12): 2 325–2 350.

    Article  Google Scholar 

  • Stearns D E, Forward R B. 1984. Photosensitivity of the calanoid copepod Acartia tonsa. Marine Biology, 82(1): 85–89.

    Article  Google Scholar 

  • Storz U C, Paul R J. 1998. Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light. Journal of Comparative Physiology, 183(6): 709–717.

    Article  Google Scholar 

  • Strom S L. 2001. Light–aided digestion, grazing and growth in herbivorous protists. Aquatic Microbial Ecology, 23: 253–261.

    Article  Google Scholar 

  • Sun S, Wang R, Zhang G T, Yang B, Ji P, Zhang F. 2002. A preliminary study on the over–summer strategy of Calanus sinicus in the Yellow Sea. Oceanol. Limnol. Sin., special issue: Zooplankton Population Dynamics: 92–99. (in Chinese with English Abstract)

    Google Scholar 

  • Sunda W G, Huntsman S A. 1997. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature, 390(6658): 389–392.

    Article  Google Scholar 

  • Sweatt A J, Forward R. 1985. Spectral sensitivity of the chaetognath Sagitta hispida Conant. Biological Bulletin, 168(1): 32–38.

    Article  Google Scholar 

  • Tao Z C, Zhang W C, Sun S. 2004. The wave–specific influence of visible and ultraviolet light on zooplankton behaviour. Marine Sciences, 28(9): 56–61. (in Chinese with English abstract)

    Google Scholar 

  • Uye S, Huang C, Onbe T. 1990. Ontogenetic diel vertical migration of the planktonic copepod Calanussinicus in the Inland Sea of Japan. Marine Biology, 104(3): 389–396.

    Article  Google Scholar 

  • Uye S, Huang C, Onbe T. 1992. Ontogenetic diel vertical migration of the planktonic copepod Calanus sinicus in the Inland Sea of Japan. Marine Biology, 113(3): 391–400.

    Article  Google Scholar 

  • Uye S. 1986. Impact of copepod grazing on the red–tide flagellate Chattonella antiqua. Marine Biology, 92(1): 35–43.

    Article  Google Scholar 

  • Vallina S M, Simó R. 2007. Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science, 315(5811): 506–508.

    Article  Google Scholar 

  • Wang R, Li C L, Wang K, Zhang W C. 1998. Feeding activities of zooplankton in the Bohai Sea. Fisheries Oceanography, 7 (3–4): 265–271.

    Article  Google Scholar 

  • Wang R, Zuo T, Wang K. 2003. The Yellow Sea cold bottom water–an oversummering site for Calanus sinicus (Copepoda, Crustacea). Journal of Plankton Research, 25(2): 169–183.

    Article  Google Scholar 

  • Wang S W, Li C L, Sun S, Ning X R, Zhang W P. 2009. Spring and autumn reproduction of Calanus sinicus in the Yellow Sea. Marine Ecology Progress, 379(1): 123–133.

    Article  Google Scholar 

  • Wang X M, Tang J W, Song Q J, Ding J, Ma C F. 2006. The statistic inversion algorithms and spectral relations of total absorption coefficients for the Huanghai Sea and the East China Sea. Oceanologia et Limnologia Sinica, 37(3): 256–263. (in Chinese with English abstract)

    Google Scholar 

  • Williamson C E, Zagarese H E, Schulze P C, Hargreaves B R, Seva J. 1994. The impact of short–term exposure to UV–B radiation on zooplankton communities in north temperate lakes. Journal of Plankton Research, 16(3): 205–218.

    Article  Google Scholar 

  • Zagarese H E, Feldman M, Williamson C E. 1997. UV–Binduced damage and photoreactivation in three species of Boeckella (Copepoda, Calanoida). Journal of Plankton Research, 19(3): 357–367.

    Article  Google Scholar 

  • Zhang F, Sun S, Zhang G T. 2002a. Preliminary study on egglaying and hatching of Calanus sinicus (Copepoda: Calanoida) in the laboratory. Oceanol. Limnol. Sin., special issue: Zooplankton Population Dynamics: 10–18. (in Chinese with English abstract)

    Google Scholar 

  • Zhang G T, Sun S, Sun S. 2002b. Effects of diel spawning rhythm and temperature on egg production and hatching success on Calanus sinicus. Oceanol. Limnol. Sin., special issue: Zooplankton Population Dynamics: 71–77. (in Chinese with English abstract)

    Google Scholar 

  • Zhang G T, Sun S, Zhang F. 2005. Seasonal variation of reproduction rates and body size of Calanus sinicus in the Southern Yellow Sea, China. Journal of Plankton Research, 27(2): 135–143.

    Article  Google Scholar 

  • Zhang W C, Wang R. 2000. Effect of concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus sinicus. Acta Oceanologica Sinica, 22(6): 88–94. (in Chinese with English abstract)

    Google Scholar 

  • Zheng X Y, Zheng Z. 1989. Study on the relationship between mandibular edge and feeding mechanism of Copepoda. Oceanologia et Limnologia Sinica, 20(4): 308–313. (in Chinese with English Abstract)

    Google Scholar 

  • Zuo T, Wang R, Wang K, Gao S W. 2004. Vertical distribution and diurnal migration of zooplankton in the southern Yellow Sea in summer. Acta Ecologica Sinica, 24(3): 524–530. (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgment

We thank the crew of the R/V Beidou for the assistance in zooplankton sampling during the field survey.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengtan Liu or Wuchang Zhang.

Additional information

Supported by the National Key R&D Program of China (No. 2017YFC1404402), the Science & Technology Basic Resources Investigation Program of China (No. 2017FY100803), the Project of Global Change and Air–Sea Interaction (No. GASI–02–PAC–STMSspr), and the National Natural Science Foundation of China (No. 41306155)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Z., Wang, Y., Wang, J. et al. Photobehaviors of the calanoid copepod Calanus sinicus from the Yellow Sea to visible and UV–B radiation as a function of wavelength and intensity. J. Ocean. Limnol. 37, 1289–1300 (2019). https://doi.org/10.1007/s00343-019-8163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8163-4

Keyword

Navigation