Skip to main content
Log in

Expression profiles of sex-related genes in gonads of genetic male Takifugu rubripes after 17β-estradiol immersion

  • Aquaculture and Fisheries
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

An Erratum to this article was published on 24 August 2019

This article has been updated

Abstract

Estradiol treatment during early life stages of tiger puffer Takifugu rubripes induces feminization in genetic males. However, the ovaries in genetic males may revert to testes once estradiol treatment is halted. Therefore studies should investigate molecular mechanisms underlying ovary-to-testis recovery in genetic males after treatment. In the present study, tiger puffer were exposed to 10, and 100 µg/L 17β-estradiol (E2) from 15 to 100 days post-hatching (dph), then gonad phenotypes and expression profiles of six sex-related genes (cyp19a, foxl2, dmrt1, amh, sox9a, and sox9b) were characterized after the exposure. Results showed that both 10 and 100 µg/L E2 induced ovarian development in genetic males at 100 dph. However, all ovaries induced by 10 µg/L E2 first developed into intersexual gonads and subsequently reverted to testes after the exposure. As for treatment of 100 µg/L E2, while the rest of the ovaries maintained morphological stability, percentages of intersexual gonads reached 38%–57%, and none were reverted to testes. Increased mRNA levels of cyp19a, foxl2 and sox9b and decreased mRNA levels of dmrtl, amh, and sox9a were observed during the ovarian development in genetic males. While contrary gene expression profiles were detected during ovary-to-testis transformation. The mRNA levels of all the six genes were increased during the development of intersexual gonads. These results indicated that up-regulation of dmrt1, amh and sox9a is associated with initial ovary-to-intersexual transformation, and suppression of foxl2, cyp19a and sox9b is essential for complete ovary-to-testis recovery in genetic males. This research will help to trace the molecular processes underlying gonadal transformation in teleosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 24 August 2019

    The original version of this article unfortunately contained a mistake. The publication year in the header on the first page (p. 1113) of this article was incorrect.

References

  • Aparicio S, Chapman J, Stupka E, Putnam N, Chia J M, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke M D, Roach J, Oh T, Ho I Y, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith S F, Clark M S, Edwards Y J, Doggett N, Zharkikh A, Tavtigian S V, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan Y H, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S. 2002. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science, 297(5585): 1 301–1 310.

    Article  Google Scholar 

  • Baroiller J F, D’Cotta H. 2001. Environment and sex determination in farmed fish. Comparative Biochemistry and Physiology C: Toxicology & Pharmacology, 130(4): 399–409.

    Google Scholar 

  • Baumann L, Knörr S, Keiter S, Rehberger K, Volz S, Schiller V, Fenske M, Holbech H, Segner H, Braunbeck T. 2014. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol. Toxicology and Applied Pharmacology, 278(3): 230–237.

    Article  Google Scholar 

  • Bhandari R K, Komuro H, Nakamura S, Higa M, Nakamura M. 2003. Gonadal restructuring and correlative steroid hormone profiles during natural sex change in protogynous honeycomb grouper (Epinephelus merra). Zoological Science, 20(11): 1 399–1 404.

    Article  Google Scholar 

  • Blázquez M, González A, Papadaki M, Mylonas C, Piferrer F. 2008. Sex-related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European sea bass (Dicentrarchus labrax). General and Comparative Endocrinology, 158(1): 95–101.

    Article  Google Scholar 

  • Chiang E F L, Pai C I, Wyatt M, Yan Y L, Postlethwait J, Chung B C. 2001. Two Sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Developmental Biology, 231(1): 149–163.

    Article  Google Scholar 

  • Fleming N I, Knower K C, Lazarus K A, Fuller P J, Simpson E R, Clyne C D. 2010. Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS One, 5(12): e14389.

    Article  Google Scholar 

  • Georges A, Auguste A, Bessière L, Vanet A, Todeschini A L, Veitia R A. 2013. FOXL2: a central transcription factor of the ovary. Journal of Molecular Endocrinology, 52(1): R17–R33.

    Article  Google Scholar 

  • Guiguen Y, Baroiller J F, Ricordell M, Iseki K, Mcmeel O M, Martin S A M, Fostier A. 1999. Involvement of estrogens in the process of sex differentiation in two fish species: the rainbow trout (Oncorhynchus mykiss) and a tilapia (Oreochromis niloticus). Molecular Reproduction and Development, 54(2): 154–162.

    Article  Google Scholar 

  • Guiguen Y, Fostier A, Piferrer F, Chang C F. 2010. Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. General and Comparative Endocrinology, 165(3): 352–366.

    Article  Google Scholar 

  • Horiguchi R, Nozu R, Hirai T, Kobayashi Y, Nakamura M. 2018. Expression patterns of sex differentiation-related genes during gonadal sex change in the protogynous wrasse, Halichoeres trimaculatus. General and Comparative Endocrinology, 257: 67–73.

    Article  Google Scholar 

  • Hu P, Liu B, Meng Z, Liu X F, Jia Y D, Yang Z, Lei J L. 2017. Recovery of gonadal development in tiger puffer Takifugu rubripes after exposure to 17β-estradiol during early life stages. Chinese Journal of Oceanology and Limnology, 35(5): 613–623.

    Article  Google Scholar 

  • Hu Q, Guo W, Gao Y, Tang R, Li D P. 2015. Molecular cloning and characterization of amh and dax1 genes and their expression during sex inversion in rice-field eel Monopterus albus. Scientific Reports, 5: 16 667.

    Article  Google Scholar 

  • Hu Q, Guo W, Gao Y, Tang R, Li D P. 2014. Molecular cloning and analysis of gonadal expression of Foxl2 in the rice-field eel Monopterus albus. Scientific Reports, 4: 6 884.

    Article  Google Scholar 

  • Ijiri S, Kaneko H, Kobayashi T, Wang D S, Sakai F, Paul-Prasanth B, Nakamura M, Nagahama Y. 2008. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biology of Reproduction, 78(2): 333–341.

    Article  Google Scholar 

  • Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K. 2012. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (Fugu). PLoS Genetics, 8(7): e1002798.

    Article  Google Scholar 

  • Kim Y, Muroki H, Yamamoto K, Deng J M, Behringer R R, Nakamura T, Akiyama H. 2011. Generation of transgenic mice for conditional overexpression of Sox9. Journal of Bone and Mineral Metabolism, 29(1): 123–129.

    Article  Google Scholar 

  • Kobayashi T, Matsuda M, Kajiura-Kobayshi H, Suzuki A, Saito N, Nakamoto M, Shibata N, Nagahama Y. 2004. Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Developmental Dynamics, 231(3): 518–526.

    Article  Google Scholar 

  • Kokokiris L, Fostire A, Athanassopoulou F, Petridis D, Kentouri M. 2006. Gonadal changes and blood sex steroids levels during natural sex inversion in the protogynous Mediterranean red porgy, Pagrus pagrus (Teleostei: Sparidae). General and Comparative Endocrinology, 149(1): 42–48.

    Article  Google Scholar 

  • Lambeth L S, Morris K, Ayers K L, Wise T G, O’Neil T, Wilson S, Cao Y, Sinclair A H, Cutting A D, Doran T J, Smith C A. 2016. Overexpression of anti-Müllerian hormone disrupts gonadal sex differentiation, blocks sex hormone synthesis, and supports cell autonomous sex development in the chicken. Endocrinology, 157(3): 1 258–1 275.

    Article  Google Scholar 

  • Lambeth L S, Raymond C S, Roeszler K N, Kuroiwa A, Nakata T, Zarkower D, Smith C A. 2014. Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads. Developmental Biology, 389(2): 160–172.

    Article  Google Scholar 

  • Lau E S, Zhang Z W, Qin M M, Ge W. 2016. Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all-male offspring due to failed ovarian differentiation. Scientific Reports, 6: 37 357.

    Article  Google Scholar 

  • Lee K H, Yamaguchi A, Rashid H, Kadomura K, Yasumoto S, Matsuyama M. 2009. Estradiol-17β treatment induces intersexual gonadal development in the pufferfish, Takifugu rubripes. Zoological Science, 26(9): 639–645.

    Article  Google Scholar 

  • Li M H, Sun Y L, Zhao J, Shi H J, Zeng S, Ye K, Jiang D N, Zhou L Y, Sun L N, Tao W J, Nagahama Y, Kocher T D, Wang D S. 2015. A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia, Oreochromis niloticus. PLoS Genetics, 11(11): e1005678.

    Article  Google Scholar 

  • Li M H, Yang H H, Li M R, Sun Y L, Jiang X L, Xie Q P, Wang T R, Shi H J, Sun L N, Zhou L Y, Wang D S. 2013. Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinology, 154(12): 4 814–4 825.

    Article  Google Scholar 

  • Liu H Q, Guan B, Xu J, Hou C C, Tian H, Chen H X. 2013. Genetic manipulation of sex ratio for the large-scale breeding of YY super-male and XY all-male yellow catfish (Pelteobagrus fulvidraco (Richardson)). Marine Biotechnology, 15(3): 321–328.

    Article  Google Scholar 

  • Liu J F, Guiguen Y, Liu S J. 2009. Aromatase (P450arom) and 11β-hydroxylase (P45011β) genes are differentially expressed during the sex change process of the protogynous rice field eel, monopterus albus. Fish Physiology and Biochemistry, 35(3): 511–518.

    Article  Google Scholar 

  • Maack G, Segner H. 2003. Morphological development of the gonads in zebrafish. Journal of Fish Biology, 62(4): 895–906.

    Article  Google Scholar 

  • Mair G C, Abucay J S, Abella T A, Beardmore J A, Skibinski D O F. 1997. Genetic manipulation of sex ratio for the large scale production of all-male tilapia Oreochromis niloticus. Canadian Journal of Fisheries and Aquatic Sciences, 54(2): 396–404.

    Article  Google Scholar 

  • Masuyama H, Yamada M, Kamei Y, Fujiwara-Ishikawa T, Todo T, Nagahama Y, Matsuda M. 2012. Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka. Chromosome Research, 20(1): 163–176.

    Article  Google Scholar 

  • Nakamura S, Watakabe I, Nishimura T, Picard J Y, Toyoda A, Taniguchi Y, di Clemente N, Tanaka M. 2012. Hyperproliferation of mitotically active germ cells due to defective anti-Müllerian hormone signaling mediates sex reversal in medaka. Development, 139(13): 2 283–2 287.

    Article  Google Scholar 

  • Nozu R, Horiguchi R, Kobayashi Y, Nakamura M. 2015. Expression profile of doublesex/male abnormal-3-related transcription factor-1 during gonadal sex change in the protogynous wrasse, Halichoeres trimaculatus. Molecular Reproduction and Development, 82(11): 859–866.

    Article  Google Scholar 

  • Pan Q W, Anderson J, Bertho S, Herpin A, Wilson C, Postlethwait J H, Schartl M, Guiguen Y. 2016. Vertebrate sex-determining genes play musical chairs. Comptes Rendus Biologies, 339: 258–262.

    Article  Google Scholar 

  • Pfennig F, Standke A, Gutzeit H O. 2015. The role of Amh signaling in teleost fish-Multiple functions not restricted to the gonads. General and Comparative Endocrinology, 223: 87–107.

    Article  Google Scholar 

  • Piferrer F, Blázquez M. 2005. Aromatase distribution and regulation in fish. Fish Physiology and Biochemistry, 31(2–3): 215–226.

    Article  Google Scholar 

  • Rutaisire J, Levavi-Sivan B, Nyatia N, Booth A. 2008. Juvenile intersexuality in the cyprinid fish Labeo victorianus. Cybium: International Journal of Ichthyology, 32(2): 232.

    Google Scholar 

  • Sekido R, Lovell-Badge R. 2009. Sex determination and SRY: down to a wink and a nudge? Trends in Genetics, 25(1): 19–29.

    Article  Google Scholar 

  • She Z Y, Yang W X. 2017. Sry and SoxE genes: How they participate in mammalian sex determination and gonadal development? Seminars in Cell and Developmental Biology, 63: 13–22.

    Article  Google Scholar 

  • Shen X Y, Cui J Z, Yang G P, Gong Q L, Gu Q Q. 2007. Expression detection of DMRTs and two sox9 genes in Takifugu rubripes (Tetraodontidae, Vertebrata). Journal of Ocean University of China, 6(2): 182–186.

    Article  Google Scholar 

  • Shiraishi E, Yoshinaga N, Miura T, Yokoi H, Wakamatsu Y, Abe S, Kitano T. 2008. Müllerian inhibiting substance is required for germ cell proliferation during early gonadal differentiation in medaka (Oryzias latipes). Endocrinology, 149(4): 1 813–1 819.

    Article  Google Scholar 

  • Skaar K S, Nóbrega R H, Magaraki A, Olsen L C, Schulz R W, Male R. 2011. Proteolytically activated, recombinant anti-Müllerian hormone inhibits androgen secretion, proliferation, and differentiation of Spermatogonia in adult zebrafish testis organ cultures. Endocrinology, 152(9): 3 527–3 540.

    Article  Google Scholar 

  • Strüssmann C A, Nakamura M. 2002. Morphology, endocrinology, and environmental modulation of gonadal sex differentiation in teleost fish. Fish Physiology and Biochemistry, 26(1): 13–29.

    Article  Google Scholar 

  • Sun D, Zhang Y, Wang C, Hua X, Zhang X A, Yan J. 2013. Sox9-related signaling controls zebrafish juvenile ovary-testis transformation. Cell Death and Disease, 4(11): e930.

    Article  Google Scholar 

  • Suzuki A, Nakamoto M, Kato Y, Shibata N. 2005. Effects of estradiol-17β on germ cell proliferation and DMY expression during early sexual differentiation of the medaka Oryzias latipes. iZoological Science, 22(7): 791–796.

    Google Scholar 

  • Tong S K, Hsu H J, Chung B C. 2010. Zebrafish monosex population reveals female dominance in sex determination and earliest events of gonad differentiation. Developmental Biology, 344(2): 849–856.

    Article  Google Scholar 

  • Uno T, Ishizuka M, Itakura T. 2012. Cytochrome P450 (CYP) in fish. Environmental Toxicology and Pharmacology, 34(1): 1–13.

    Article  Google Scholar 

  • Vizziano-Cantonnet D, Baron D, Mahè S, Cauty C, Fostier A, Guiguen Y. 2008. Estrogen treatment up-regulates female genes but does not suppress all early testicular markers during rainbow trout male-to-female gonadal transdifferentiation. Journal of Molecular Endocrinology, 41(5): 277–288.

    Article  Google Scholar 

  • Vizziano D, Randuineau G, Baron D, Gauty C, Guiguen Y. 2007. Characterization of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss. Developmental Dynamics, 236(8): 2 198–2 206.

    Article  Google Scholar 

  • Wang D S, Kobayashi T, Zhou L Y, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y. 2007. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with Ad4 binding protein/steroidogenic factor. Molecular Endocrinology, 21(3): 712–725.

    Article  Google Scholar 

  • Wang D S, Zhao L Y, Kobayashi T, Matsuda M, Shibata Y, Sakai F, Nagahama Y. 2010. Doublesex- and Mab-3-related transcription factor-1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia. Endocrinology, 151(3): 1 331–1 340.

    Article  Google Scholar 

  • Webster K A, Schach U, Ordaz A, Steinfeld J S, Draper B W, Siegfried K R. 2017. Dmrt1 is necessary for male sexual development in zebrafish. Developmental Biology, 422(1): 33–46.

    Article  Google Scholar 

  • Wu G C, Li H W, Luo J W, Chen C, Chang C F. 2015. The potential role of Amh to prevent ectopic female development in testicular tissue of the protandrous black porgy, Acanthopagrus schlegelii. Biology of Reproduction, 92(6): 158.

    Article  Google Scholar 

  • Wu G C, Tomy S, Lee M F, Lee Y H, Yueh W S, Lin C J, Lau E L, Chang C F. 2010. Sex differentiation and sex change in the protandrous black porgy, Acanthopagrus schlegeli. General and Comparative Endocrinology, 167(3): 417–421.

    Article  Google Scholar 

  • Wu G C, Li H W, Tey W G, Lin C J, Chang C F. 2017. Expression profile of amh/Amh during bi-directional sex change in the protogynous orange-spotted grouper Epinephelus coioides. PLoS One, 12(10): e0185864.

    Article  Google Scholar 

  • Xia W, Zhou L, Yao B, Li C J, Gui J F. 2007. Differential and spermatogenic cell-specific expression of DMRT1 during sex reversal in protogynous hermaphroditic groupers. Molecular and Cellular Endocrinology, 263(1–2): 156–172.

    Article  Google Scholar 

  • Yang Y J, Wang Y, Li Z, Zhou L, Gui J F. 2017. Sequential, divergent and cooperative requirements of foxl2a and foxl2b in ovary development and maintenance of zebrafish. Genetics, 205(4): 1 551–1 572.

    Article  Google Scholar 

  • Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, Cabau C, Bouchez O, Fostier A, Guiguen Y. 2012. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Current Biology, 22(15): 1 423–1 428.

    Article  Google Scholar 

  • Yamaguchi A, Lee K H, Fujimoto H, Kadomura K, Yasumoto S, Matsuyama M. 2006. Expression of the DMRT gene and its roles in early gonadal development of the Japanese pufferfish Takifugu rubripes. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 1(1): 59–68.

    Google Scholar 

  • Zhang X B, Li M R, Ma H, Liu X Y, Shi H J, Li M H, Wang D S. 2017. Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile tilapia. Endocrinology, 158(8): 2 634–2 647.

    Google Scholar 

  • Zhao L, Svingen T, Ng E T, Koopman P. 2015. Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1. Development, 142(6): 1 083–1 088.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfu Liu.

Additional information

Supported by the Innovation of Agricultural Organization and Development of Industry Amalgamation Project (No. 125162002000160001), the Qingdao Postdoctoral Application Research Project (No. ZHHSZ201819039), and the Shandong Province Post-doctoral Innovation Projects of Special Funds (No. ZHHSZ201819032)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, P., Liu, B., Ma, Q. et al. Expression profiles of sex-related genes in gonads of genetic male Takifugu rubripes after 17β-estradiol immersion. J. Ocean. Limnol. 37, 1113–1124 (2019). https://doi.org/10.1007/s00343-019-8060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8060-x

Keyword

Navigation