Skip to main content
Log in

Environmental change and its effects on inter-decadal variations of diatom production, species composition and frustule dissolution in a coastal marginal sea

  • Ecology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The implications of climate change during the second half of the 20th century have been reported throughout the world. Although marginal seas are sensitive to climate change and anthropogenic impacts, relatively little attention has been given to the South East Asian marginal seas. Thus, to bridge this gap in knowledge, a sediment core was collected from the coastal areas of the Leizhou Peninsula in the South China Sea (SCS) to study the inter-decadal climate change and its consequences using diatom species composition as a proxy record. Diatom absolute abundance varied from 2300 to 68000 and averaged 16000 valves per gram of dry weight (v/gdw). The fractional dissolution index (Fi) was usually below 0.5, which indicates low to moderate preservation of diatom valves at coastal area of the SCS. At the inter-decadal time scale, total diatom abundance was high for the period after 1972, which coincided with 1) increased percentage of planktonic diatom abundance and Fi; 2) emergence and dominance of high productivity indicative cosmopolitan species such as Thalassionema nitzschioides and Paralia sulcata (their relative abundance increased from <1.5% to >7% for the period before and after 1972, respectively); 3) decreased relative abundance of the small-sized eutrophication indicative species, Cyclotella striata, from 70% to 40%. This study reveals that variations in the abundance of diatoms preserved in the sediment was a function of both production and dissolution/preservation of diatom valves, which in turn was intimately connected to the prevailing environmental/climatic conditions. In conclusion, these data reveal the existence of substantial changes in the coastal SCS in response to the 1970s climate shift that was recorded in different parts of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrantes F. 1988. Diatom assemblages as upwelling indicators in surface sediments offPortugal. Marine Geology, 85 (1): 15–39.

    Article  Google Scholar 

  • Appleby P G, Oldfield F. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210 Pb to the sediment. Catena, 5 (1): 1–8.

    Article  Google Scholar 

  • Armand L K, Crosta X, Quéguiner B, Mosseri J, Garcia N. 2008. Diatoms preserved in surface sediments of the northeastern Kerguelen Plateau. Deep Sea Research Part II: Topical Studies in Oceanography, 55 (5-7): 677–692.

    Article  Google Scholar 

  • Bárcena M A, Abrantes F. 1998. Evidence of a highproductivity area offthe coast of Málaga from studies of diatoms in surface sediments. Marine Micropaleontology, 35 (1-2): 91–103.

    Article  Google Scholar 

  • Bauer A, Radziejewska T, Liang K, Kowalski N, Dellwig O, Bosselmann K, Stark A, Xia Z, Harff J, Böttcher M E, Schulz-Bull D E, Waniek J J. 2013. Regional differences of hydrographical and sedimentological properties in the Beibu Gulf, South China Sea. Journal of Coastal Research, (S66): 49–71.

    Article  Google Scholar 

  • Bauer A. 2012. Hydrographical and biogeochemical characterization of the Beibu Gulf, South China Sea. der Mathematisch-Naturwissenschaftlichen Fakultät, der Universität Rostock, Rostock. 146p.

    Google Scholar 

  • Belkin I M. 2009. Rapid warming of large marine ecosystems. Progress in Oceanography, 81 (1-4): 207–213.

    Article  Google Scholar 

  • Bianchi T S, Engelhaupt E, McKee B A, Miles S, Elmgren R, Hajdu S, Savage C, Baskaran M. 2002. Do sediments from coastal sites accurately reflect time trends in water column phytoplankton? A test from Himmerfjärden Bay (Baltic Sea proper). Limnology and Oceanography, 47 (5): 1537–1544.

    Article  Google Scholar 

  • Boer W, Van den Bergh G, De Haas H, De Stigter H, Gieles R, Van Weering T C. 2006. Validation of accumulation rates in Teluk Banten (Indonesia) from commonly applied 210 Pb models, using the 1883 Krakatau tephra as time marker. Marine Geology, 227 (3): 263–277.

    Article  Google Scholar 

  • Brush G S. 2009. Historical land use, nitrogen, and coastal eutrophication: a paleoecological perspective. Estuaries and Coasts, 32 (1): 18–28.

    Article  Google Scholar 

  • Cai W J, Dai M H, Wang Y C, Zhai W D, Huang T, Chen S T, Zhang F, Chen Z Z, Wang Z H. 2004. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Continental Shelf Research, 24 (12): 1301–1319.

    Article  Google Scholar 

  • Cheng F J, Yu Z M, Song X X. 2014. Long-term changes in sedimentary diatom assemblages and their environmental implications in the Changjiang (Yangtze) River estuary, China. Chinese Journal of Oceanology and Limnology, 32 (1): 155–161.

    Article  Google Scholar 

  • Cheng Z D, Gao Y H, Liu S C, Wang D Z, Chen C P, Liang J R, Qi Y Z. 2013. Flora Algarum Marinarum Sinicarum: Tomus V. Bacillariophyta, No. II. Pennatae I, Diatomales, Achnanthales, Phaeodactylales, Eunotiales. Science Press, Beijing. 137p. (in Chinese)

    Google Scholar 

  • Finkelstein S A, Gajewski K. 2007. A palaeolimnological record of diatom-community dynamics and late-Holocene climatic changes from Prescott Island, Nunavut, central Canadian Arctic. The Holocene, 17 (6): 803–812.

    Article  Google Scholar 

  • Gebühr C, Wiltshire K H, Aberle N, van Beusekom J E, Gerdts G. 2009. Influence of nutrients, temperature, light and salinity on the occurrence of Paralia sulcata at Helgoland Roads, North Sea. Aquatic Biology, 7 (3): 185–197.

    Article  Google Scholar 

  • Giani M, Djakovac T, Degobbis D, Cozzi S, Solidoro C, Umani S F. 2012. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuarine, Coastal and Shelf Science, 115: 1–13.

    Article  Google Scholar 

  • Guo Y, Qian S. 1984. Flora Algarum Marinarum Sinicarum (Tomus V) Bacillariophyta (No. I) Centricea. Science Press, Beijing, China. (in Chinese)

    Google Scholar 

  • Harrison P J, Yin K, Lee J H W, Gan J P, Liu H B. 2008. Physical-biological coupling in the Pearl River Estuary. Continental Shelf Research, 28 (12): 1405–1415.

    Article  Google Scholar 

  • Hill M O, Bunce R G H, Shaw M W. 1975. Indicator Species Analysis, a divisive polythetic method of classification, and its application to a survey of native pinewoods in scotland. The Journal of Ecology, 63 (2): 597–613.

    Article  Google Scholar 

  • Hill M O, Šmilauer P. 2005. TWINSPAN for Windows Version 2.3. Software and user Guide. Centre for Ecology and Hydrology, University of South Bohemia, Huntingdon, Ceske Budejovice.

    Google Scholar 

  • Hinder S L, Hays G C, Edwards M, Roberts E C, Walne A W, Gravenor M B. 2012. Changes in marine dinoflagellate and diatom abundance under climate change. Nature Climate Change, 2 (4): 271–275.

    Article  Google Scholar 

  • Hu J F, Sun X S, Peng P A, Zhang G, Chivas A R. 2009. Spatial and temporal variation of organic carbon in the northern South China Sea revealed by sedimentary records. Quaternary International, 206 (1-2): 46–51.

    Article  Google Scholar 

  • Hu J Y, Kawamura H, Tang D L. 2003. Tidal front around the Hainan Island, northwest of the South China Sea. Journal of Geophysical Research: Oceans, 108 (C11): 3342.

    Article  Google Scholar 

  • Huang L M, Jian W J, Song X Y, Huang X P, Liu S, Qian P Y, Yin K D, Wu M. 2004. Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Marine Pollution Bulletin, 49 (7-8): 588–596.

    Article  Google Scholar 

  • Huang Y, Jiang H, Svante B, Li T G, Lv H Y, Ran L H. 2009. Surface sediment diatoms from the western Pacific marginal seas and their correlation to environmental variables. Chinese Journal of Oceanology and Limnology, 27 (3): 674–682.

    Article  Google Scholar 

  • Huh C A, Su C C. 1999. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239, 240 Pu. Marine Geology, 160 (1-2): 183–196.

    Article  Google Scholar 

  • Itoh S, Yasuda I, Nishikawa H, Sasaki H, Sasai Y. 2009. Transport and environmental temperature variability of eggs and larvae of the Japanese anchovy (Engraulis japonicus) and Japanese sardine (Sardinops melanostictus) in the western North Pacific estimated via numerical particle-tracking experiments. Fisheries Oceanography, 18 (2): 118–133.

    Article  Google Scholar 

  • Jiang H, Zheng Y L, Ran L H, Seidenkrantz M S. 2004. Diatoms from the surface sediments of the South China Sea and their relationships to modern hydrography. Marine Micropaleontology, 53 (3-4): 279–292.

    Article  Google Scholar 

  • Jin D X, Cheng Z D, Lin J M, Liu S C. 1985. The marine benthic diatoms in China. China Ocean Press, Springer-Verlag, Berlin Heidelberg, Beijng. 313p.

    Google Scholar 

  • Klais R, Tamminen T, Kremp A, Spilling K, Olli K. 2011. Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS One, 6 (6): e21567.

    Article  Google Scholar 

  • Kuwae M, Yamashita A, Hayami Y, Kaneda A, Sugimoto T, Inouchi Y, Amano A, Takeoka H. 2006. Sedimentary records of multidecadal-scale variability of diatom productivity in the Bungo Channel, Japan, associated with the Pacific Decadal Oscillation. Journal of Oceanography, 62 (5): 657–666.

    Article  Google Scholar 

  • Lee H S, Yamashita T, Mishima T. 2012. Multi-decadal variations of ENSO, the Pacific Decadal Oscillation and tropical cyclones in the western North Pacific. Progress in Oceanography, 105: 67–80.

    Article  Google Scholar 

  • Lee V, Olsen S. 1985. Eutrophication and management initiatives for the control of nutrient inputs to Rhode Island coastal lagoons. Estuaries, 8 (2): 191–202.

    Article  Google Scholar 

  • Li F, Lin J Q, Liang Y Y, Gan H Y, Zeng X Y, Duan Z P, Liang K, Liu X, Huo Z H, Wu C H. 2014. Coastal surface sediment quality assessment in Leizhou Peninsula (South China Sea) based on SEM-AVS analysis. Marine Pollution Bulletin, 84 (1-2): 424–436.

    Article  Google Scholar 

  • Liu K K, Chao S Y, Shaw P T, Gong G C, Chen C C, Tang T Y. 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Research Part I: Oceanographic Research Papers, 49 (8): 1387–1412.

    Article  Google Scholar 

  • Liu Y, Peng Z C, Chen T G, Wei G J, Sun W D, Sun R Y, He J F, Liu G J, Chou C L, Zartman R E. 2008. The decline of winter monsoon velocity in the South China Sea through the 20th century: evidence from the Sr/Ca records in corals. Global and Planetary Change, 63 (1): 79–85.

    Article  Google Scholar 

  • Menge B A, Chan F, Nielsen K J, Lorenzo E D, Lubchenco J. 2009. Climatic variation alters supply-side ecology: impact of climate patterns on phytoplankton and mussel recruitment. Ecological Monographs, 79 (3): 379–395.

    Article  Google Scholar 

  • Miller K R, Chapman M R, Andrews J E, Koç N. 2011. Diatom phytoplankton response to Holocene climate change in the Subpolar North Atlantic. Global and Planetary Change, 79 (3-4): 214–225.

    Article  Google Scholar 

  • Montes-Hugo M, Doney S C, Ducklow H W, Fraser W, Martinson D, Stammerjohn S E, Schofield O. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic peninsula. Science, 323 (5920): 1470–1473.

    Article  Google Scholar 

  • Nave S, Freitas P, Abrantes F. 2001. Coastal upwelling in the Canary Island region: spatial variability reflected by the surface sediment diatom record. Marine Micropaleontology, 42 (1-2): 1–23.

    Article  Google Scholar 

  • Oey L Y, Chang M C, Chang Y L, Lin Y C, Xu F H. 2013. Decadal warming of coastal China Seas and coupling with winter monsoon and currents. Geophysical Research Letters, 40 (23): 6288–6292.

    Article  Google Scholar 

  • Perren B B, Douglas M S V, Anderson N J. 2009. Diatoms reveal complex spatial and temporal patterns of recent limnological change in West Greenland. Journal of Paleolimnology, 42 (2): 233–247.

    Article  Google Scholar 

  • Qiu D J, Huang L M, Zhang J L, Lin S J. 2010. Phytoplankton dynamics in and near the highly eutrophic Pearl River Estuary, South China Sea. Continental Shelf Research, 30 (2): 177–186.

    Article  Google Scholar 

  • Renberg I. 1990. A procedure for preparing large sets of diatom slides from sediment cores. Journal of Paleolimnology, 4 (1): 87–90.

    Article  Google Scholar 

  • Romero O, Hebbeln D. 2003. Biogenic silica and diatom thanatocoenosis in surface sediments below the Peru-Chile Current: controlling mechanisms and relationship with productivity of surface waters. Marine Micropaleontology, 48 (1-2): 71–90.

    Article  Google Scholar 

  • Romero O, Hensen C. 2002. Oceanographic control of biogenic opal and diatoms in surface sediments of the Southwestern Atlantic. Marine Geology, 186 (3-4): 263–280.

    Article  Google Scholar 

  • Rosenberg R, Elmgren R, Fleischer S, Jonsson P, Persson G, Dahlin H. 1990. Marine eutrophication case studies in sweden. Ambio, 19 (3): 102–108.

    Google Scholar 

  • Round F E, Crawford R M, Mann D G. 1990. The Diatoms: Biology & Morphology of the Genera. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rühland K, Paterson A M, Smol J P. 2008. Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Global Change Biology, 14 (11): 2740–2754.

    Google Scholar 

  • Ryu E, Lee S J, Yang D Y, Kim J Y. 2008. Paleoenvironmental studies of the Korean peninsula inferred from diatom assemblages. Quaternary International, 176-177: 36–45.

    Article  Google Scholar 

  • Ryves D B, Battarbee R W, Fritz S C. 2009. The dilemma of disappearing diatoms: incorporating diatom dissolution data into palaeoenvironmental modelling and reconstruction. Quaternary Science Reviews, 28 (1-2): 120–136.

    Article  Google Scholar 

  • Ryves D B, Juggins S, Fritz S C, Battarbee R W. 2001. Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 172 (1-2): 99–113.

    Article  Google Scholar 

  • Sancetta C. 1982. Distribution of diatom species in surface sediments of the Bering and Okhotsk seas. Micropaleontology, 28 (3): 221–257.

    Article  Google Scholar 

  • Sangiorgi F, Donders T H. 2004. Reconstructing 150 years of eutrophication in the north-western Adriatic Sea (Italy) using dinoflagellate cysts, pollen and spores. Estuarine, Coastal and Shelf Science, 60 (1): 69–79.

    Article  Google Scholar 

  • Shemesh A, Burckle L H, Froelich P N. 1989. Dissolution and preservation of Antarctic diatoms and the effect on sediment thanatocoenoses. Quaternary Research, 31 (2): 288–308.

    Article  Google Scholar 

  • Shuman F R. 1978. The fate of phytoplankton chlorophyll in the euphotic zone: Washington coastal waters. University of Washington, Washington. 250p.

    Google Scholar 

  • Su C C, Huh C A. 2002. 210Pb, 137Cs and 239, 240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides. Marine Geology, 183 (1-4): 163–178.

    Article  Google Scholar 

  • Swann G E A, Mackay A W. 2006. Potential limitations of biogenic silica as an indicator of abrupt climate change in Lake Baikal, Russia. Journal of Paleolimnology, 36 (1): 81–89.

    Article  Google Scholar 

  • Tang D L, Kawamura H, Lee M A, Van Dien T. 2003. Seasonal and spatial distribution of chlorophyll-a concentrations and water conditions in the Gulf of Tonkin, South China Sea. Remote Sensing of Environment, 85 (4): 475–483.

    Article  Google Scholar 

  • Trenberth K E, Hurrell J W. 1994. Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics, 9 (6): 303–319.

    Article  Google Scholar 

  • Treppke U F, Lange C B, Donner B, Fischer G, Ruhland G, Wefer G. 1996. Diatom and silicoflagellate fluxes at the Walvis Ridge: an environment influenced by coastal upwelling in the Benguela system. Journal of Marine Research, 54 (5): 991–1016.

    Article  Google Scholar 

  • Van Iperen J M, Van Weering T C E, Jansen J H F, Van Bennekom A J. 1987. Diatoms in surface sediments of the Zaire deep-sea fan (SE Atlantic Ocean) and their relation to overlying water masses. Netherlands Journal of Sea Research, 21 (3): 203–217.

    Article  Google Scholar 

  • Wang B, Huang F, Wu Z W, Yang J, Fu X H, Kikuchi K. 2009. Multi-scale climate variability of the South China Sea monsoon: a review. Dynamics of Atmospheres and Oceans, 47 (1-3): 15–37.

    Article  Google Scholar 

  • Wang S L, Xu X R, Sun Y X, Liu J L, Li H B. 2013. Heavy metal pollution in coastal areas of South China: a review. Marine Pollution Bulletin, 76 (1-2): 7–15.

    Article  Google Scholar 

  • Weckström K, Korhola A, Weckström J. 2007. Impacts of eutrophication on diatom life forms and species richness in coastal waters of the Baltic Sea. Ambio, 36 (2): 155–160.

    Article  Google Scholar 

  • Wu R, Gao Y H, Fang Q, Chen C P, Lan B B, Sun L, Lan D Z. 2013. Diatom assemblages in surface sediments from the South China Sea as environmental indicators. Chinese Journal of Oceanology and Limnology, 31 (1): 31–45.

    Article  Google Scholar 

  • Xie S P, Du Y, Huang G, Zheng X T, Tokinaga H, Hu K M, Liu Q Y. 2010. Decadal shift in El Niño influences on Indo-Western Pacific and East Asian climate in the 1970s. Journal of Climate, 23 (12): 3352–3368.

    Article  Google Scholar 

  • Yin K D, Qian P Y, Wu M C S, Chen J C, Huang L M, Song X Y, Jian W J. 2001. Shift from P to N limitation of phytoplankton growth across the Pearl River estuarine plume during summer. Marine Ecology Progress Series, 221: 17–28.

    Article  Google Scholar 

  • Zachariasse W J, Riedel W R, Sanfilippo A, Schmidt R R, Brolsma M J, Schrader H J, Gersonde R, Drooger M M, Broekman J A. 1978. Micropaleontological counting methods and techniques: an exercise on an eight metres section of the lower Pliocene of Capo Rossello, Sicily. Utrecht Micropaleontological Bulletins, Vol. 17. Utrecht University, Utrecht.

    Google Scholar 

  • Zhao H, Tang D L. 2007. Effect of 1998 El Niño on the distribution of phytoplankton in the South China Sea. Journal of Geophysical Research, 112 (C2): C02017.

    Article  Google Scholar 

  • Zong Y Q. 1997. Implications of Paralia sulcata abundance in Scottish isolation basins. Diatom Research, 12 (1): 125–150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahui Gao  (高亚辉).

Additional information

Supported by the National Natural Science Foundation of China (No. 41476116) and the National Key Research and Development Program of China (No. 2016YFA0601302)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abate, R., Gao, Y., Chen, C. et al. Environmental change and its effects on inter-decadal variations of diatom production, species composition and frustule dissolution in a coastal marginal sea. Chin. J. Ocean. Limnol. 35, 1362–1373 (2017). https://doi.org/10.1007/s00343-017-0084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-0084-5

Keywords

Navigation