Skip to main content
Log in

Dietary lipid and gross energy affect protein utilization in the rare minnow Gobiocypris rarus

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

An 8-week feeding trial was conducted to detect the optimal dietary protein and energy, as well as the effects of protein to energy ratio on growth, for the rare minnow (Gobiocypris rarus), which are critical to nutrition standardization for model fish. Twenty-four diets were formulated to contain three gross energy (10, 12.5, 15 kJ/g), four protein (20%, 25%, 30%, 35%), and two lipid levels (3%, 6%). The results showed that optimal dietary E/P was 41.7–50 kJ/g for maximum growth in juvenile rare minnows at 6% dietary crude lipid. At 3% dietary lipid, specific growth rate (SGR) increased markedly when E/P decreased from 62.5 kJ/g to 35.7 kJ/g and gross energy was 12.5 kJ/g, and from 75 kJ/g to 42.9 kJ/g when gross energy was 15.0 kJ/g. The optimal gross energy was estimated at 12.5 kJ/g and excess energy decreased food intake and growth. Dietary lipid exhibited an apparent protein-sparing effect. Optimal protein decreased from 35% to 25%–30% with an increase in dietary lipid from 3% to 6% without adversely effecting growth. Dietary lipid level affects the optimal dietary E/P ratio. In conclusion, recommended dietary protein and energy for rare minnow are 20%–35% and 10–12.5 kJ/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai Q H, Xie X J. 2006. Effects of dietary soybean protein levels on metabolic response of the southern catfish, Silurus meridionalis. Comp. Biochem. Phys. A: Mol. Integr. Physiol., 144(1): 41–47.

    Article  Google Scholar 

  • Al Hafedh Y S, Siddiqui A Q, Al-Saiady M Y. 1999. Effects of dietary protein levels on gonad maturation, size and age at first maturity, fecundity and growth of Nile tilapia. Aquacult. Int., 7(5): 319–332.

    Article  Google Scholar 

  • Ali M Z, Jauncey K. 2005. Approaches to optimizing dietary protein to energy ratio for African catfish Clarias gariepinus (Burchell, 1822). Aquacult. Nutr., 11(2): 95–101.

    Article  Google Scholar 

  • AOAC (Association of Official Analytical Chemists). 2005. Official Methods of Analysis of AOAC International. 17th edn. AOAC, Inc., Arlington, Virginia, USA.

    Google Scholar 

  • APHA. 1992. Standard Methods for the Examination of Water and Wastewater. 18th edn. American Public Health Association, Washington D C, USA.

    Google Scholar 

  • Boujard T, Médale F. 1994. Regulation of voluntary feed intake in juvenile rainbow trout fed by hand or by selffeeders with diets containing two different protein/energy ratios, Pseudobagrus fulvidraco. Aquat. Living Resour., 7(3): 211–215.

    Article  Google Scholar 

  • Bromley P J. 1980. Effect of dietary protein, lipid and energy content on the growth of turbot (Scophthalmus maximus L). Aquaculture, 19(4): 359–369.

    Article  Google Scholar 

  • Brown C R, Cameron J N. 1991. The relationship between specific dynamic action (SDA) and protein synthesis rates in the channel catfish. Physiol. Zool., 64(1): 298–309.

    Article  Google Scholar 

  • Cao W X, Wang J W. 2003. Rare Minnoe: a new laboratory animal in China. Laboratory Animal Science and Management, 20 (Suppl.): 96–99. (in Chinese with English abstract)

    Google Scholar 

  • Carter C G, Hauler R C. 2000. Fish meal replacement by plant meals in extruded feeds for Atlantic salmon, Salmo salar L. Aquaculture, 185(3–4): 299–311.

    Article  Google Scholar 

  • Catacutan M R, Coloso R M. 1995. Effect of dietary protein to energy ratios on growth, survival, and body composition of juvenile Asian sea-bass, Lates calcarifer. Aquaculture, 131(1–2): 125–133.

    Article  Google Scholar 

  • Chakraborty S C, Ross L G, Ross B. 1995. Energy budget and metabolism in common carp, Cyprinus carpio L., fed on different dietary protein levels and at different ration levels. Aquacult. Nutr., 1(3): 179–187.

    Article  Google Scholar 

  • Cho C Y, Kaushik S J. 1990. Nutritional energetics in fish: energy and protein utilization in rainbow trout (Salmo gairdneri). World Review of Nutrition and Dietetics, 61: 132–172.

    Article  Google Scholar 

  • Company R, Calduch-Giner J A, Kaushik S, Pérez-Sánchez J. 1999. Growth performance and adiposity in gilthead sea bream (Sparus aurata): risks and benefits of high energy diets. Aquaculture, 171(3–4): 279–292.

    Article  Google Scholar 

  • Cowey C B. 1979. Protein and amino acid requirement of finfish. In: Halver J E, Tiews K eds. Finfish Nutrition and Fishfeed Technology, vol. 1. Heenemann GmbH, Berlin. p.3–16.

    Google Scholar 

  • Cui Y B, Liu J K. 1990. Comparison of energy budget among six teleosts—II. Metabolic rates. Comp. Biochem. Physiol. A: Physiol., 97(2): 169–174.

    Article  Google Scholar 

  • Dai X Q, Yang G H, Li J. 1988. The optimum calorie protein ratio in the diet for black carp fingerlings. Journal of Fisheries of China, 12(1): 35–41. (in Chinese with English abstract)

    Google Scholar 

  • Daniels W H, Robinson E H. 1986. Protein and energy requirements of juvenile red drum (Sciaenops ocellatus). Aquaculture, 53(3–4): 243–252.

    Article  Google Scholar 

  • De Silva S S, Gunasekera R M, Shim K F. 1991. Interactions of varying dietary protein and lipid levels in young red tilapia: evidence of protein sparing. Aquaculture, 95(3–4): 305–318.

    Article  Google Scholar 

  • El-sayed A-F M, Teshima S. 1992. Protein and energy requirements of Nile tilapia, Oreochromis niloticus, fry. Aquaculture, 103(1): 55–63.

    Article  Google Scholar 

  • Fu S J, Xie X J, Cao Z D. 2005. Effect of dietary composition on specific dynamic action in southern catfish Silurus meridionalis Chen. Aquac. Res., 36(14): 1 384–1 390.

    Article  Google Scholar 

  • Garling D L Jr, Wilson R P. 1976. Optimum dietary protein to energy ratio for channel catfish fingerlings, Ictalurus punctatus. J. Nutr., 106(9): 1 368–1 375.

    Google Scholar 

  • Jauncey K. 1982. The effects of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapias (Sarotherodon mossambicus). Aquaculture, 27(1): 43–54.

    Article  Google Scholar 

  • Jobling M, Davies P S. 1980. Effects of feeding on metabolic rate, and the specific dynamic action in plaice, Pleuronecte-platessa L. J. Fish Biol., 16(6): 629–638.

    Article  Google Scholar 

  • Jobling M. 1983. Towards an explanation of specific dynamic action (SDA). J. Fish Biol., 23(5): 549–555.

    Article  Google Scholar 

  • Kaushik S J. 1995. Nutrient requirements, supply and utilization in the context of carp culture. Aquaculture, 129(1–4): 225–241.

    Article  Google Scholar 

  • Kim L O, Lee S M. 2005. Effects of the dietary protein and lipid levels on growth and body composition of bagrid catfish, Pseudobagrus fulvidraco. Aquaculture, 243(1–4): 323–329.

    Article  Google Scholar 

  • Lee D J, Putnam G B. 1973. The Response of rainbow-trout to varying protein/energy ratios in a test diet. J. Nutr., 103(6): 916–922.

    Google Scholar 

  • Lee S M, Jeon I G, Lee J Y. 2002. Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli). Aquaculture, 211(1–4): 227–239.

    Article  Google Scholar 

  • Legrow S M, Beamish F W H. 1986. Influence of dietary protein and lipid on apparent heat increment of rainbowtrout, Salmo gairdneri. Can. J. Fish. Aquat. Sci., 43(1): 19–25.

    Article  Google Scholar 

  • Lovell R T. 1979. Factors affecting voluntary food consumption by channel catfish. In: Proceedings of the Annual Conference Southeastern Association of Fish and Wildlife Agencies. New York: National Agricultural Library, 33: 563–571.

    Google Scholar 

  • Lupatsch I, Kissil G W, Sklan D, Pfeffer E. 1998. Energy and protein requirements for maintenance and growth in gilthead seabream (Sparus aurata L.). Aquacult. Nutr., 4(3): 165–173.

    Article  Google Scholar 

  • Mathis N, Feidt C, Brun-Bellut J. 2003. Influence of protein/ energy ratio on carcass quality during the growing period of Eurasian perch (Perca fluviatilis). Aquaculture, 217 (1–4): 453–464.

    Article  Google Scholar 

  • Medland T E, Beamish F W H. 1985. The influence of diet and fish density on apparent heat increment in rainbow trout, Salmo gairdneri. Aquaculture, 47(1): 1–10.

    Article  Google Scholar 

  • NRC. 1993. Nutrient Requirements of Fish. National Academy Press, Washington, DC, USA.

    Google Scholar 

  • Page J W, Andrews J W. 1973. Interactions of dietary levels of protein and energy on channel catfish (Ictalurus punctatus). J. Nutr., 103(9): 1 339–1 346.

    Google Scholar 

  • Peres H, Oliva-Teles A. 1999. Influence of temperature on protein utilization in juvenile European seabass (Dicentrarchus labrax). Aquaculture, 170(3–4): 337–348.

    Article  Google Scholar 

  • Raven P A, Devlin R H, Higgs D A. 2006. Influence of dietary digestible energy content on growth, protein and energy utilization and body composition of growth hormone transgenic and non-transgenic coho salmon (Oncorhynchus kisutch). Aquaculture, 254(1–4): 730–747.

    Article  Google Scholar 

  • Reinitz G L, Orme L E, Lemm C A, Hitzel F N. 1978. Influence of varying lipid concentrations with two protein concentrations in diets for rainbow trout (Salmo gairdneri). Trans. Am. Fish. Soc., 107(5): 751–754.

    Article  Google Scholar 

  • Salhi M, Bessonart M, Chediak G, Bellagamba M, Carnevia D. 2004. Growth, feed utilization and body composition of black catfish, Rhamdia quelen, fry fed diets containing different protein and energy levels. Aquaculture, 231(1–4): 435–444.

    Article  Google Scholar 

  • Samantaray K, Mohanty S S. 1997. Interactions of dietary levels of protein and energy on fingerling snakehead, Channa striata. Aquaculture, 156(3–4): 241–249.

    Article  Google Scholar 

  • Shiau S Y, Huang S L. 1990. Influence of varying energy levels with two protein concentrations in diets for hybrid tilapia (Oreochromis niloticus×O. aureus) reared in seawater. Aquaculture, 91(1–2): 143–152.

    Article  Google Scholar 

  • Shiau S Y, Lan C W. 1996. Optimum dietary protein level and protein to energy ratio for growth of grouper (Epinephelus malabaricus). Aquaculture, 145(1–4): 259–266.

    Article  Google Scholar 

  • Shiau S Y, Peng C Y. 1993. Protein-sparing effect by carbohydrates in diets for tilapia, Oreochromis niloticus×O. aureus. Aquaculture, 117(3–4): 327–334.

    Article  Google Scholar 

  • Smith R R. 1989. Nutritional energetics. In: Halver J E ed. Fish Nutrition. 2nd edn. Academic Press, San Diego, CA, USA. p.1–29.

  • Tandler A, Beamish F W H. 1981. Apparent specific dynamic action (SDA), fish weight and level of caloric intake in largemouth bass, Micropterus salmoides Lacepede. Aquaculture, 23(1–4): 231–242.

    Article  Google Scholar 

  • Tibbetts S M, Lall S P, Milley J E. 2005. Effects of dietary protein and lipid levels and DP DE-1 ratio on growth, feed utilization and hepatosomatic index of juvenile haddock, Melanogrammus aeglefinus L. Aquacult. Nutr., 11(1): 67–75.

    Article  Google Scholar 

  • Wang Y, Guo J L, Li K, Bureau D P. 2006. Effects of dietary protein and energy levels on growth, feed utilization and body composition of cuneate drum (Nibea miichthioides). Aquaculture, 252(2–4): 421–428.

    Article  Google Scholar 

  • Wilson R P. 1989. Amino acids and proteins. In: Halver J E ed. Fish Nutrition. 2nd edn. Academic Press, San Diego, CA, USA. p.111–151.

  • Winfree R A, Stickney R R. 1981. Effects of dietary protein and energy on growth, feed conversion efficiency and body composition of Tilapia aurea. J. Nutr., 111(6): 1 001–1 012.

    Google Scholar 

  • Yang H, Cree T C, Schalch D S. 1987. Effect of a carbohydrate restricted, calorie reduced diet on the growth of young rats and on serum growth hormone, somatomedins, total thyroxine and triiodothyronine, free T4 index, and total corticosterone. Metab.-Clin. Exp., 36(8): 794–798.

    Article  Google Scholar 

  • Zanotto F P, Gouveia S M, Simpson S J, Raubenheimer D, Calder P C. 1997. Nutritional homeostasis in locusts: is there a mechanism for increased energy expenditure during carbohydrate overfeeding? J. Exp. Biol., 200(18): 2 437–2 448.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Wang  (王剑伟).

Additional information

Supported by the National Key Technology R&D Program of China (No. 2011BAI15B01-41) and the National High Technology Research and Development Program of China (863 Program) (No. 2012AA06A302)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Xiong, X., Xie, S. et al. Dietary lipid and gross energy affect protein utilization in the rare minnow Gobiocypris rarus . Chin. J. Ocean. Limnol. 34, 740–748 (2016). https://doi.org/10.1007/s00343-016-5350-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5350-4

Keywords

Navigation