Skip to main content
Log in

Identifying sensitive areas of adaptive observations for prediction of the Kuroshio large meander using a shallow-water model

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Sensitive areas for prediction of the Kuroshio large meander using a 1.5-layer, shallow-water ocean model were investigated using the conditional nonlinear optimal perturbation (CNOP) and first singular vector (FSV) methods. A series of sensitivity experiments were designed to test the sensitivity of sensitive areas within the numerical model. The following results were obtained: (1) the eff ect of initial CNOP and FSV patterns in their sensitive areas is greater than that of the same patterns in randomly selected areas, with the eff ect of the initial CNOP patterns in CNOP sensitive areas being the greatest; (2) both CNOP- and FSV-type initial errors grow more quickly than random errors; (3) the eff ect of random errors superimposed on the sensitive areas is greater than that of random errors introduced into randomly selected areas, and initial errors in the CNOP sensitive areas have greater eff ects on final forecasts. These results reveal that the sensitive areas determined using the CNOP are more sensitive than those of FSV and other randomly selected areas. In addition, ideal hindcasting experiments were conducted to examine the validity of the sensitive areas. The results indicate that reduction (or elimination) of CNOP-type errors in CNOP sensitive areas at the initial time has a greater forecast benefit than the reduction (or elimination) of FSV-type errors in FSV sensitive areas. These results suggest that the CNOP method is suitable for determining sensitive areas in the prediction of the Kuroshio large-meander path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker N L, Daley R. 2000. Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Quart. J. Roy. Meteor. Soc., 126 (565): 1431–1454.

    Article  Google Scholar 

  • Bergot T, Hello G, Joly A, Malardel S. 1999. Adaptive observations: a feasibility study. Mon. Wea. Rev., 127 (5): 743–765.

    Article  Google Scholar 

  • Berliner L M, Lu Z Q, Snyder C. 1999. Statistical design for adaptive weather observations. J. Atmos. Sci., 56 (15): 2536–2552.

    Article  Google Scholar 

  • Birgin E G, Martínez J M, Raydan M. 2000. Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim., 10 (4): 1196–1211.

    Article  Google Scholar 

  • Bishop C H, Etherton B J, Majumdar S J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon. Wea. Rev., 129 (3): 420–436.

    Google Scholar 

  • Bishop C H, Toth Z. 1999. Ensemble transformation and adaptive observations. J. Atmos. Sci., 56 (11): 1748–1765.

    Article  Google Scholar 

  • Buizza R, Montani A. 1999. Targeting observations using singular vectors. J. Atmos. Sci., 56 (17): 2965–2985.

    Article  Google Scholar 

  • Ebuchi N, Hanawa K. 2000. Mesoscale eddies observed by TOLEX-ADCP and TOPEX/POSEIDON altimeter in the Kuroshio recirculation region south of Japan. J. Oceanogr., 56 (1): 43–57.

    Article  Google Scholar 

  • Ebuchi N, Hanawa K. 2003. Influence of mesoscale eddies on variations of the Kuroshio path south of Japan. J. Oceanogr., 59(1): 25–36.

    Article  Google Scholar 

  • Fujii Y, Tsujino H, Usui N, Nakano H, Kamachi M. 2008. Application of singular vector analysis to the Kuroshio large meander. J. Geophys. Res., 113(C7): C07026, http://dx.doi.org/10.1029/2007JC004476.

    Article  Google Scholar 

  • Hamill T M, Snyder C. 2002. Using improved backgrounderror covariances from an ensemble kalman filter for adaptive observations. Mon. Wea. Rev., 130(6): 1552–1572.

    Article  Google Scholar 

  • Hellerman S, Rosenstein M. 1983. Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr., 13(7): 1093–1104.

    Article  Google Scholar 

  • Ishikawa Y, Awaji T, Komori N, Toyoda T. 2004. Application of sensitivity analysis using an adjoint model for shortrange forecasts of the Kuroshio path south of Japan. J. Oceanogr., 60(2): 293–301.

    Article  Google Scholar 

  • Kawabe M. 1995. Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J. Phys. Oceanogr., 25(12): 3103–3117.

    Article  Google Scholar 

  • Langland R H, Rohaly G D. 1996). Adjoint-based targeting of observations for FASTEX cyclones. In: Proceedings of the Seventh Conference on Mesoscale Processes, Reading. Amer. Meteor. Soc., United Kingdom. p.369–371.

    Google Scholar 

  • Langland R H. 2005. Issues in targeted observing. Quart. J. Roy. Meteor. Soc., 131(613): 3409–3425.

    Article  Google Scholar 

  • Majumdar S J, Aberson S D, Bishop C H, Buizza R, Peng M S, Reynolds C A. 2006. A comparison of adaptive observing guidance for Atlantic tropical cyclones. Mon. Wea. Rev., 134(9): 2354–2372.

    Article  Google Scholar 

  • Mitsudera H, Waseda T, Yoshikawa Y, Taguchi B. 2001. Anticyclonic eddies and Kuroshio meander formation. Geophys. Res. Lett., 28(10): 2025–2028.

    Article  Google Scholar 

  • Miyazawa Y, Guo X Y, Yamagata T. 2004. Roles of mesoscale eddies in the kuroshio paths. J. Phys. Oceanogr., 34(10): 2203–2222.

    Article  Google Scholar 

  • Miyazawa Y, Kagimoto T, Guo X Y, Sakuma H. 2008. The Kuroshio large meander formation in 2004 analyzed by an eddy-resolving ocean forecast system. J. Geophys. Res., 113(C10): C10015.

    Article  Google Scholar 

  • Miyazawa Y, Yamane S, Guo X Y, Yamagata T. 2005. Ensemble forecast of the Kuroshio meandering. J. Geophys. Res., 110(C10): C10026, http://dx.doi.org/10.1029/2004JC002426.

    Article  Google Scholar 

  • Morss R E, Emanuel K A, Snyder C. 2001. Idealized adaptive observation strategies for improving numerical weather prediction. J. Atmos. Sci., 58(2): 210–232.

    Article  Google Scholar 

  • Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlinear Process es in Geophys ics, 10(6): 493–501.

    Article  Google Scholar 

  • Mu M, Wang H L, Zhou F F. 2007. A preliminary application of conditional nonlinear optimal perturbation to adaptive observation. Chin. J. Atmos. Sci., 31(6): 1102–1112. (in Chinese)

    Google Scholar 

  • Mu M, Zhou F F, Wang H L. 2009. A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: conditional nonlinear optimal perturbation. Mon. Wea. Rev., 137(5): 1623–1639.

    Article  Google Scholar 

  • Mu M. 2013. Methods, current status, and prospect of targeted observation. Science China Earth Sciences, 56(12): 1997–2005.

    Article  Google Scholar 

  • Palmer T N, Gelaro R, Barkmeijer J, Buizza R. 1998. Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55(4): 633–653.

    Article  Google Scholar 

  • Pu Z X, Kalnay E, Sela J, Szunyogh I. 1997. Sensitivity of forecast errors to initial conditions with a quasi-inverse linear method. Mon. Wea. Rev., 125(10): 2479–2503.

    Article  Google Scholar 

  • Pu Z X, Kalnay E. 1999. Targeting observations with the quasi-inverse linear and adjoint NCEP global models: performance during FASTEX. Quart. J. Roy. Meteor. Soc., 125(561): 3329–3337.

    Article  Google Scholar 

  • Qin X H, Mu M. 2011. A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction. Mon. Wea. Rev., 139(7): 2218–2232.

    Article  Google Scholar 

  • Qiu B, Miao W F. 2000. Kuroshio path variations south of Japan: bimodality as a self-sustained internal oscillation. J. Phys. Oceanogr., 30(8): 2124–2137.

    Article  Google Scholar 

  • Taft B A. 1972. Characteristics of the flow of the Kuroshio south of Japan. In: Stommel H, Yoshida K eds. Kuroshio: Its Physical Aspects. University of Tokyo Press, Tokyo. p.165–216.

    Google Scholar 

  • Tsujino H, Usui N, Nakano H. 2006. Dynamics of Kuroshio path variations in a high-resolution general circulation model. J. Geophys. Res., 111(C11): C11001, http://dx.doi. org/10.1029/2005JC003118.

    Article  Google Scholar 

  • Usui N, Tsujino H, Nakano H, Fujii Y. 2008. Formation process of the Kuroshio large meander i. 2004. J. Geophys. Res., 113(C8): C08047.

    Article  Google Scholar 

  • Wang Q, Mu M, Dijkstra H A. 2012. Application of conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander. Adv. Atmos. Sci., 29(1): 118–134.

    Article  Google Scholar 

  • Wang Q, Mu M, Dijkstra H A. 2013a. The similarity between optimal precursor and optimally growing initial error in prediction of Kuroshio large meander and its application to targeted observation. J. Geophys. Res., 118(2): 869–884.

    Article  Google Scholar 

  • Wang Q, Mu M, Dijkstra H A. 2013b. Effects of nonlinear physical processes on optimal error growth in predictability experiments of the Kuroshio Large Meander. J. Geophys. Res., 118(12): 6425–6436.

    Article  Google Scholar 

  • Waseda T, Mitsudera H, Taguchi B, Yoshikawa Y. 2003. On the eddy-Kuroshio interaction: meander formation processes. J. Geophys. Res., 108(C7): 3 220, http://dx.doi.org/10.1029/2002JC001583.

    Article  Google Scholar 

  • Yu Y S, Mu M, Duan W S, Gong T T. 2012. Contribution of the location and spatial pattern of initial error to uncertainties in El Niño predictions. J. Geophys. Res., 117(C6): C06018, http://dx.doi.org/10.1029/2011JC007758.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang  (王强).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41230420, 41306023), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA11010303), and the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1406401)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, G., Wang, Q. & Mu, M. Identifying sensitive areas of adaptive observations for prediction of the Kuroshio large meander using a shallow-water model. Chin. J. Ocean. Limnol. 34, 1122–1133 (2016). https://doi.org/10.1007/s00343-016-4264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-4264-5

Keywords

Navigation