Skip to main content
Log in

Effects of irradiated Ergosan on the growth performance and mucus biological components of rainbow trout Oncorhynchus mykiss

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Effects of irradiated and non-irradiated Ergosan extract (alginic acid) on rainbow trout growth performance and skin mucosal immunity were compared. Ergosan was irradiated at 30 kGy in a cobalt-60 irradiator. A total of 252 fish (128.03±9.4 g) were randomly divided into four equal groups, given the basal diet either unsupplemented with Ergosan (control group) or supplemented with crude Ergosan (5 g/kg), ethanol-extracted Ergosan (0.33 g/kg) or irradiated Ergosan (0.33 g/kg) according to this protocol: basal diet for 15 days, treatment diet for 15 days, basal diet for 10 days and treatment diet for 15 days. Highest growth performance was observed in fish fed irradiated Ergosan (P <0.05). Dietary administration of different Ergosan types did not cause any changes in mucus protein level, but improved alkaline phosphatase level and hemagglutination titer compared with the control (basal diet without Ergosan) on day 55 of feeding trial (P <0.05). Furthermore, the highest value of lysozyme activity was observed in gamma-irradiated Ergosan on day 55. In conclusion, gamma-irradiated Ergosan at 0.33 g/kg was found to improve growth performance and mucus biological components significantly in comparison with the control group (basal diet without Ergosan).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradford M M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72 (1-2): 248–254.

    Article  Google Scholar 

  • Byun E H, Kim J H, Sung N Y, Choi J, Lim S T, Kim K H, Yook H S, Byun M W, Lee J W. 2008. Effects of gamma irradiation on the physical and structural properties of ß-glucan. Radiat. Phys. Chem., 77 (6): 781–786.

    Article  Google Scholar 

  • Dobrovolskaia M A, Aggarwal P, Hall J B, McNei S E. 2008. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm., 5 (4): 487–495.

    Article  Google Scholar 

  • Draget K I, Taylor C. 2011. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll., 25 (2): 251–256.

    Article  Google Scholar 

  • Duy N N, Van Phu D, Anh N T, Hien N Q. 2011. Synergistic degradation to prepare oligochitosan by ?-irradiation of chitosan solution in the presence of hydrogen peroxide. Radiat. Phys. Chem., 80 (7): 848–853.

    Article  Google Scholar 

  • Florence A T. 2005. Nanoparticle uptake by the oral route: fulfilling its potential? Drug Discov. Today: Technol., 2 (1): 75–81.

    Google Scholar 

  • Haji-Saeid M, Safrany A, Sampa M H D O, Ramamoorthy N. 2010. Radiation processing of natural polymers: the IAEA contribution. Radiat. Phys. Chem., 79 (3): 255–260.

    Article  Google Scholar 

  • Han X Y, Du W L, Huang Q C, Xu Z R, Wang Y Z. 2012. Changes in small intestinal morphology and digestive enzyme activity with oral administration of copper-loaded chitosan nanoparticles in rats. Biol. Trace Elem. Res., 145 (3): 355–360.

    Article  Google Scholar 

  • Heidarieh M, Borzouei A, Rajabifar S, Ziaie F, Shafiei S H. 2012a. Effects of gamma irradiation on antioxidant activity of Ergosan. Iran. J. Radiat. Res., 9 (4): 245–249.

    Google Scholar 

  • Heidarieh M, Daryalal F, Mirvaghefi A R, Rajabifar S, Diallo A, Sadeghi M, Zeiai F, Moodi S, Maadi E, Sheikhzadeh N, Heidarieh H, Hedyati M. 2014b. Preparation and anatomical distribution study of 67 Ga-alginic acid nanoparticles for SPECT purposes in rainbow trout (Oncorhynchus mykiss). Nukleonika, 59 (4): 153–159.

    Article  Google Scholar 

  • Heidarieh M, Daryalal F, Mirvaghefi A R, Shahbazfar A A, Moodi S, Heidarieh H. 2014a. Histopathological alterations in rainbow trout, Oncorhynchus mykiss (Walbaum, 1792), induced by irradiated alginic acid. J. Appl. Ichthyol., 30 (3): 543–545.

    Article  Google Scholar 

  • Heidarieh M, Mirvaghefi A R, Akbari M, Farahmand H, Sheikhzadeh N, Shahbazfar A A, Behgar M. 2012b. Effect of dietary Ergosan on growth performance, digestive enzymes, intestinal histology, hematological parameters and body composition of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem., 38 (4): 1 169–1 174.

    Article  Google Scholar 

  • Hellio C, Pons A M, Beaupoil C, Bourgougnon N, Gal Y L. 2002. Antibacterial, antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus. Int. J. Antimicrob. Ag., 20 (3): 214–219.

    Article  Google Scholar 

  • Idrees M, Nasira S, Naeem M, Aftab T, Khan M M A, Moinuddin, Varshney L. 2012. Gamma irradiated sodium alginate induced modulation of phosphoenolpyruvate carboxylase and production of essential oil and citral content of lemongrass. Ind. Crops Prod., 40: 62–68.

    Article  Google Scholar 

  • Karim M R, Lim K T, Lee C J, Islam Bhuiyan M T, Kim H J, Park L S, Lee M S. 2007. Synthesis of core-shell silverpolyaniline nanocomposites by gamma radiolysis method. J. Polym. Sci. A: Poly. Chem., 45 (24): 5 741–5 747.

    Article  Google Scholar 

  • Look M, Bandyopadhyay A, Blum J S, Fahmy T M. 2010. Application Of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv. Drug Deliv. Rev., 62 (4-5): 378–393.

    Article  Google Scholar 

  • Naeem M, Idrees M, Aftab T, Khan M M A, Moinuddin V L. 2012. Depolymerised carrageenan enhances physiological activities and menthol production in Mentha arvensis L. Carbohydr. Polym., 87 (2): 1 211–1 218.

    Article  Google Scholar 

  • Palaksha K J, Shin G W, Kim Y R, Jung T S. 2008. Evaluation of non-specific immune components from the skin mucus of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 24 (4): 479–488.

    Article  Google Scholar 

  • Pasanphan W, Rimdusit P, Choofong S, Piroonpan T, Nilsuwankosit S. 2010. Systematic fabrication of chitosan nanoparticle by gamma irradiation. Radiat. Phys. Chem., 79 (10): 1 095–1 102.

    Article  Google Scholar 

  • Peddie S, Zou J, Secombes C J. 2002. Immunostimulation in the rainbow trout (Oncorhynchus mykiss) following intraperitoneal administration of Ergosan. Vet. Immunol. Immunopathol., 86 (1-2): 101–113.

    Article  Google Scholar 

  • Qi L F, Xu Z R, Jiang X, Hu C H, Zou X F. 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res., 339 (16): 2 693–2 700.

    Article  Google Scholar 

  • Sakai M. 1999. Current research status of fish immunostimulants. Aquaculture, 172 (1-2): 63–92.

    Article  Google Scholar 

  • Sarfaraz A, Naeem M, Nasira S, Idrees M, Aftab T, Hashmi N, Khan M A, Moinuddin, Varshney L. 2011. An evaluation of the effects of irradiated sodium alginate on the growth, physiological activities and essential oil production of fennel (Foeniculum vulgare Mill.). J. Med. Plants Res., 5 (1): 15–21.

    Google Scholar 

  • Sheikhzadeh N, Pashaki A K, Nofouzi K, Heidarieh M, Tayefi-Nasrabadi H. 2012. Effects of dietary Ergosan on cutaneous mucosal immune response in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 32 (3): 407–410.

    Article  Google Scholar 

  • Subramanian S, MacKinnon S L, Ross N W. 2007. A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 148 (3): 256–263.

    Article  Google Scholar 

  • Wang Y B, Li J R. 2011. Effects of chitosan nanoparticles on survival, growth and meat quality of tilapia, Oreochromis nilotica. Nanotoxicology, 5 (3): 425–431.

    Article  Google Scholar 

  • Wen Z S, Xu Y L, Zou X T, Xu Z R. 2011. Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar. Drugs, 9 (6): 1 038–1 055.

    Article  Google Scholar 

  • Zhou X X, Wang Y B, Gu Q, Li W F. 2009. Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture, 291 (1–2): 78–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Najmeh Sheikhzadeh or Marzieh Heidarieh.

Additional information

Supported by the Research Affairs of University of Tabriz, Iran and Nuclear Science and Technology Institute, Karaj, Iran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhzadeh, N., Chehrara, F., Heidarieh, M. et al. Effects of irradiated Ergosan on the growth performance and mucus biological components of rainbow trout Oncorhynchus mykiss . Chin. J. Ocean. Limnol. 34, 13–18 (2016). https://doi.org/10.1007/s00343-015-4333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4333-1

Keywords

Navigation