Skip to main content
Log in

Vertebral deformities in hatchery-reared and wild-caught juvenile Japanese flounder, Paralichthys olivaceus

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The present study compared vertebral deformities of hatchery-reared and wild-caught juvenile Japanese flounder, Paralichthys olivaceus. A total of 362 hatchery-reared flounder (total length 122.5–155.8 mm) were collected from three commercial hatcheries located in Yantai, East China, and 89 wild fish (total length 124.7–161.3 mm) were caught off Yangma Island near Yantai City (37°27′N, 121°36′E). All the fish were dissected, photographed, and images of the axial skeleton were examined for vertebral deformities. Compared with wild-caught flounder in which no deformed vertebrae were detected, 48 (13.3%) hatcheryreared fish had deformed vertebrae. The deformities were classified as compression, compression-ankylosis, and dislocation-ankylosis. The vertebral deformities were mainly localized between post-cranial vertebra 1 and 3, with vertebrae number 1 as the most commonly deformed. The causative factors leading to vertebral deformities in reared Japanese flounder may be related to unfavorable temperature conditions, inflammation, damage, or rupture to the intervertebral ligaments under rearing conditions. Furthermore, no significant difference in the total number of vertebral bodies was observed between wild-caught (38.8±0.4) and hatchery-reared flounder (38.1±0.9) (P>0.05). However, the number of vertebral bodies of hatchery-reared and wild-caught flounder ranged from 35 to 39 and from 38 to 39, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balbontin F, De Silva S S, Ehrlich K F. 1973. A comparative study of anatomical and chemical characteristics of reared and wild herring. Aquaculture, 2:217–240.

    Article  Google Scholar 

  • Barahona-Fernandes M H. 1982. Body deformation in hatchery reared European sea bass Dicentrarchus labrax (L.). Types, prevalence and effect on fish survival. Journal of Fish Biology, 21(3): 239–249.

    Article  Google Scholar 

  • Ben Alaya H, Galzin R, Quignard J P, Trabelsi M. 2011. Spinal deformities in the black-striped pipefish Syngnathus abaster (Pisces, Syngnathidae) from the Tunis North Lake, Tunisia. Chemosphere, 82(3): 318–320.

    Article  Google Scholar 

  • Berg A E, Rødseth O M, Tangerås A, Hansen T J. 2006. Time of vaccination influences development of adherences, growth and spinal deformities in Atlantic salmon, Salmo salar L. Diseases of A quatic O rganisms, 69(2/3): 239–248.

    Article  Google Scholar 

  • Boglione C, Gagliardi F, Scardi M, Cataudella S. 2001. Skeletal descriptors and quality assessment in larvae and post-larvae of wild-caught and hatchery-reared gilthead sea bream (Sparus aurata L. 1758). Aquaculture, 192(1): 1–22.

    Article  Google Scholar 

  • Davidson J, Good C, Welsh C, Summerfelt S T. 2011. Abnormal swimming behavior and increased deformities in rainbow trout Oncorhynchus mykiss cultured in low exchange water recirculating aquaculture systems. Aquacultural Engineering, 45(3): 109–117.

    Article  Google Scholar 

  • Dentry W, Lindsey C C. 1978. Vertebral variation in zebrafish (Brachydanio rerio) related to the prefertilization temperature history of their parents. Canadian Journal of Zoology, 56(2): 280–283.

    Article  Google Scholar 

  • Deschamps M H, Kacem A, Ventura R, Courty G, Haffray P, Meunier F J, Sire J Y. 2008. Assessment of “discreet” vertebral abnormalities, bone mineralization and bone compactness in farmed rainbow trout. Aquaculture, 279(1): 11–17.

    Article  Google Scholar 

  • Eissa A E, Moustafa M, El-Husseiny I N, Saeid S, Saleh O, Borhan T. 2009. Identification of some skeletal deformities in freshwater teleosts raised in Egyptian aquaculture. Chemosphere, 77(3): 419–425.

    Article  Google Scholar 

  • Fjelldal P G, Grotmol S, Kryvi H, Gjerdet N R, Taranger G L, Hansen T, Porter M J, Totland G K. 2004. Pinealectomy induces malformation of the spine and reduces the mechanical strength of the vertebrae in Atlantic salmon, Salmo salar. Journal of Pineal Research, 36(2): 132–139.

    Article  Google Scholar 

  • Fjelldal P G, Hansen T J, Berg A E. 2007a. A radiological study on the development of vertebral deformities in cultured Atlantic salmon (Salmo salar L.). Aquaculture, 273(4): 721–728.

    Article  Google Scholar 

  • Fjelldal P G, Hansen T, Breck O, Sandvik R, Waagbø R, Berg A, Ørnsrud R. 2009b. Supplementation of dietary minerals during the early seawater phase increase vertebral strength and reduce the prevalence of vertebral deformities in fast growing under-yearling Atlantic salmon (Salmo salar L.) smolt. Aquaculture Nutrition, 15(4): 366–378.

    Article  Google Scholar 

  • Fjelldal P G, Hansen T. 2010. Vertebral deformities in triploid Atlantic salmon (Salmo salar L.) underyearling smolts. Aquaculture, 309(1): 131–136.

    Article  Google Scholar 

  • Fjelldal P G, Lock E J, Grotmol S, Totland G K, Nordgarden U, Flik G, Hansen T. 2006. Impact of smolt production strategy on vertebral growth and mineralisation during smoltification and the early seawater phase in Atlantic salmon (Salmo salar, L.). Aquaculture, 261(2): 715–728.

    Article  Google Scholar 

  • Fjelldal P G, Meeren T, Jørstad K E, Hansen T J. 2009a. A radiological study on vertebral deformities in cultured and wild Atlantic cod (Gadus morhua, L.). Aquaculture, 289(1): 6–12.

    Article  Google Scholar 

  • Fjelldal P G, Nordgarden U, Hansen T. 2007b. The mineral content affects vertebral morphology in underyearling smolt of Atlantic salmon (Salmo salar, L.). Aquaculture, 270(1): 231–239.

    Article  Google Scholar 

  • Fowler J A. 1970. Control of vertebral number in teleosts-an embryological problem. Quarterly Review of Biology, 45(2): 148–167.

    Article  Google Scholar 

  • Fraser M R, Anderson T A, De Nys R. 2004. Ontogenic development of the spine and spinal deformities in larval barramundi (Lates calcarifer) culture. Aquaculture, 242(1): 697–711.

    Article  Google Scholar 

  • Fraser M R, De Nys R. 2005. The morphology and occurrence of jaw and operculum deformities in cultured barramundi (Lates calcarifer) larvae. Aquaculture, 250(1): 496–503.

    Article  Google Scholar 

  • Gavaia P J, Dinis M T, Cancela M L. 2002. Osteological development and abnormalities of the vertebral column and caudal skeleton in larval and juvenile stages of hatchery-reared Senegal sole (Solea sengalensis). Aquaculture, 211(1): 305–323.

    Article  Google Scholar 

  • Gislason H, Karstensen H, Christiansen D, Hjelde K, Helland S, Bæverfjord G. 2010. Rib and vertebral deformities in rainbow trout (Oncorhynchus mykiss) explained by a dominant-mutation mechanism. Aquaculture, 309(1): 86–95.

    Article  Google Scholar 

  • Haga Y, Du S J, Satoh S, Kotani T, Fushimi H, Takeuchi T. 2011. Analysis of the mechanism of skeletal deformity in fish larvae using a vitamin A-induced bone deformity model. Aquaculture, 315(1): 26–33.

    Article  Google Scholar 

  • Haga Y, Suzuki T, Kagechika H, Takeuchi T. 2003. A retinoic acid receptor-selective agonist causes jaw deformity in the Japanese flounder, Paralicchthys olivaceus. Aquaculture, 221(1): 381–392.

    Article  Google Scholar 

  • Haga Y, Takeuchi T, Seikai T. 2002. Influence of all-trans retinoic acid on pigmentation and skeletal formation in larval Japanese flounder. Fisheries Science, 68(3): 560–570.

    Article  Google Scholar 

  • Hattori M, Sawada Y, Takagi Y, Suzuki R, Okada T, Kumai H. 2003. Vertebral deformities in cultured red sea bream, Pagrus major, Temminck and Schlegel. Aquac ulture Res earch, 34(13): 1 129–1 137.

    Article  Google Scholar 

  • Hubbs C. 1959. High incidence of vertebral deformities in two natural populations of fishes inhabiting warm springs. Ecology, 40(1): 154–155.

    Article  Google Scholar 

  • Jordan D S. 1891. Relations of temperature to vertebrae among fishes. Proceedings of The United States National Museum, 14:107–120.

    Article  Google Scholar 

  • Katayama S, Isshiki T. 2007. Variation in otolith macrostructure of Japanese flounder (Paralichthys olivaceus): a method to discriminate between wild and released fish. Journal of Sea Research, 57(2): 180–186.

    Article  Google Scholar 

  • Komada N. 1980. Incidence of gross malformations and the vertebral anomalies of the natural and hatchery Plecoglossus altivelis. Copeia, 1:29–35.

    Article  Google Scholar 

  • Kvellestad A, Høie S, Thorud K, Tørud B, Lyngøy A. 2000. Platyspondyly and shortness of vertebral column in farmed Atlantic salmon Salmo salar in Norwaydescription and interpretation of pathologic changes. Diseases of A quatic O rganisms, 39(2): 97–108.

    Article  Google Scholar 

  • Le Vay L, Carvalho G R, Quinitio E T, Lebata J H, Ut V N, Fushimi H. 2007. Quality of hatchery-reared juveniles for marine fisheries stock enhancement. Aquaculture, 268(1): 169–180.

    Article  Google Scholar 

  • Lewis L M, Lall S P, Eckhard Witten P. 2004. Morphological description of the early stages of spine and vertebral development in hatchery-reared larval and juvenile Atlantic halibut (Hippoglossus hippoglossus). Aquaculture, 241(1): 47–59.

    Article  Google Scholar 

  • Lewis L M, Lall S P. 2006. Development of the axial skeleton and skeletal abnormalities of Atlantic halibut (Hippoglossus hippolossus) from first feeding through metamorphosis. Aquaculture, 257(1): 124–135.

    Article  Google Scholar 

  • Lv H J, Zhang X M, Zhang P D, Li W T, Miao Z Q. 2011. The implement of plastic oval tags for mark-recapture in juvenile Japanese flounder, Paralichthys olivaceus, on the northeast coast of Shandong Province, China. A frican J ournal of B iotechnology, 10(61): 13 263–13 277.

    Google Scholar 

  • Madsen L, Dalsgaard I. 1999. Vertebral column deformities in farmed rainbow trout (Oncorhynchus mykiss). Aquaculture, 171(1): 41–48.

    Article  Google Scholar 

  • Matsuoka M. 1987. Development of skeletal tissue and skeletal muscle in the red sea bream (Pagrus major). Bulletin of the Seikai Regional Fisheries Research Laboratory, 65:1–114.

    Google Scholar 

  • Meunier F J, Ramzu M Y. 2006. La régionalisation morphofonctionnelle de l’axe vertébral chez les Téléostéens en relation avec le mode de nage. Comptes Rendus Palevol, 5(3): 499–507.

    Article  Google Scholar 

  • Nordvik K, Kryvi H, Totland G K, Grotmol S. 2005. The salmon vertebral body develops through mineralization of two preformed tissues that are encompassed by two layers of bone. J ournal of Anatomy, 206(2): 103–114.

    Article  Google Scholar 

  • Puvanendran V, Calder-Crewe C, Brown J A. 2009. Vertebral deformity in cultured Atlantic cod larvae: ontogeny and effects on mortality. Aquac ulture Res earch, 40(14): 1 653–1 660.

    Article  Google Scholar 

  • Sánchez R C, Obregón E B, Rauco M R. 2011. Hypoxia is like an ethiological factor in vertebral column deformity of salmon (Salmo salar). Aquaculture, 316(1): 13–19.

    Article  Google Scholar 

  • Shelbourne J E. 1964. The artificial propagation of marine fish. Advances in Marine Biology, 2:1–83.

    Article  Google Scholar 

  • Shikano T, Ando D, Taniguchi N. 2005. Relationships of vertebral deformity with genetic variation and heterosis in the guppy Poecilia reticulata. Aquaculture, 246(1): 133–138.

    Article  Google Scholar 

  • Sullivan M, Hammond G, Roberts R J, Manchester N J. 2007. Spinal deformation in commercially cultured Atlantic salmon, Salmo salar L.: a clinical and radiological study. J ournal of Fish Diseases, 30(12): 745–752.

    Article  Google Scholar 

  • Takeuchi T, Dedi J, Haga Y, Seikai T, Watanabe T. 1998. Effect of vitamin A compounds on bone deformity in larval Japanese flounder (Paralicchthys olivaceus). Aquaculture, 169(3): 155–165.

    Article  Google Scholar 

  • Tåning Å V. 1952. Experimental study of meristic characters in fishes. Biological Reviews, 27(2): 169–193.

    Article  Google Scholar 

  • Teh S J, Deng X, Teh F, Hung S O. 2002. Selenium-induced teratogenicity in Sacramento splittail (Pogonichthys macrolepidotus). Mar ine Environ mental Res earch, 54(3): 605–608.

    Article  Google Scholar 

  • Vladimirov V I. 1975. Critical periods in the development of fishes. Journal of Ichthyology, 15(6): 851–868.

    Google Scholar 

  • Wargelius A, Fjelldal P G, Hansen T. 2005. Heat shock during early somitogenesis induces caudal vertebral column defects in Atlantic salmon (Salmo salar). Dev elopment Genes and Evol ution, 215(7): 350–357.

    Article  Google Scholar 

  • Westernhagen H V, Dethlefsen V, Cameron P, Berg J, Fürstenberg G. 1988. Developmental defects in pelagic fish embryos from the western Baltic. Helgoländer Meeresuntersuchungen, 42(1): 13–36.

    Article  Google Scholar 

  • Whittle D M, Sergeant D B, Huestis S Y, Hyatt W H. 1992. Foodchain accumulation of PCDF isomers in the Great Lakes aquatic community. Chemosphere, 25(1): 181–184.

    Article  Google Scholar 

  • Witten P E, Gil-Martens L, Hall B K, Huysseune A, Obach A. 2005. Compressed vertebrae in Atlantic salmon Salmo salar: evidence for metaplastic chondrogenesis as a skeletogenic response late in ontogeny. Dis eases of Aquat ic Org anisms, 64(3): 237–246.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumei Zhang  (张秀梅).

Additional information

Supported by the Special Fund for Agro-Scientific Research in the Public Interest (No. 201003068) and the Open Foundation from Ocean Fishery Science and Technology in the Most Important Subjects of Zhejiang, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, H., Zhang, X., Fu, M. et al. Vertebral deformities in hatchery-reared and wild-caught juvenile Japanese flounder, Paralichthys olivaceus . Chin. J. Ocean. Limnol. 33, 84–91 (2015). https://doi.org/10.1007/s00343-015-4041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4041-x

Keyword

Navigation