Skip to main content
Log in

Deriving Changjiang coastal zone wind from C-band SAR and its application to salinity simulation

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Wind plays an important role in hydrodynamic processes such as the expansion of Changjiang (Yangtze) River Diluted Water (CDW), and shelf circulation in the Changjiang estuary. Thus, it is essential to include wind in the numerical simulation of these phenomena. Synthetic aperture radar (SAR) with high resolution and wide spatial coverage is valuable for measuring spatially inhomogeneous ocean surface wind fields. We have collected 87 ERS-2 SAR images with wind-induced streaks that cover the Changjiang coastal area, to verify and improve the validity of wind direction retrieval using the 2D fast Fourier transform method. We then used these wind directions as inputs to derive SAR wind speeds using the C-band model. To demonstrate the applicability of the algorithms, we validated the SAR-retrieved wind fields using QuikSCAT measurements and the atmospheric Weather Research Forecasting model. In general, we found good agreement between the datasets, indicating the reliability and applicability of SAR-retrieved algorithms under different atmospheric conditions. We investigated the main error sources of this process, and conducted sensitivity analyses to estimate the wind speed errors caused by the effect of speckle, uncertainties in wind direction, and inaccuracies in the normalized radar cross section. Finally, we used the SAR-retrieved wind fields to simulate the salinity distribution off the Changjiang estuary. The findings of this study will be valuable for wind resource assessment and the development of future numerical ocean models based on SAR images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argenti F, Alparone L. 2002. Speckle removal from SAR images in the undecimated wavelet domain. IEEE Trans. Geosci. Remote Sens., 40(11): 2 363–2 374.

    Article  Google Scholar 

  • Attema E P W. 1991. The Active Microwave Instrument onboard the ERS-1 satellite. Proceedings of the IEEE, 79(6): 791–799, http://dx.doi.org/10.1109/5.90158.

    Article  Google Scholar 

  • Blanton J, Wenner E, Werner F, Knott D. 1995. Effects of wind-generated coastal currents on the transport of blue crab megalopae on a shallow continental shelf. Bull. Mar. Sci., 57(3): 739–752.

    Google Scholar 

  • Chang P H, Isobe A. 2003. A numerical study on the Changjiang diluted water in the Yellow and East China Seas. J. Geophys. Res-Oceans, 108(C9): 1–17, http://dx.doi.org/10.1029/2002JC001749.

    Article  Google Scholar 

  • Christiansen M B, Koch W, Horstmann J, Hasager C B, Nielsen M. 2006. Wind resource assessment from C-band SAR. Remote Sens. Environ., 105(1): 68–81.

    Article  Google Scholar 

  • Dankert H, Horstmann J, Rosenthal W. 2003. Ocean wind fields retrieved from radar-image sequences. J. Geophys. Res-Oceans, 108(C11): 2 150–2 152, http://dx.doi.org/10.1029/2003JC002056.

    Article  Google Scholar 

  • Done J, Davis C A, Weisman M. 2004. The next generation of N W P: explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmos. Sci. Lett., 5(6): 110–117, http://dx.doi.org/10.1002/asl.72.

    Article  Google Scholar 

  • Donnelly W, Carswell R M, Chang P, Wilkerson J. 1999. Revised ocean backscatter models at C and Ku band under high wind conditions. J. Geophys. Res-Oceans, 104(C5): 11 485–11 497, http://dx.doi.org/10.1029/1998JC900030.

    Article  Google Scholar 

  • Elfouhaily T, Thompson D R, Vandemark D, Chapron B. 1999. A new bistatic model for electromagnetic scattering from perfectly conducting random surfaces. Waves in Random Media, 9(3): 281–294.

    Article  Google Scholar 

  • Fetterer F, Gineris D, Wackerman C C. 1998. Validating a scatterometer wind algorithm for ERS-1 SAR. IEEE Trans. Geosci. Remote Sens., 36(2): 479–492.

    Article  Google Scholar 

  • Fichaux N, Ranchin T. 2002. Combined extraction of high spatial resolution wind speed and wind direction from SAR images: a new approach using wavelet transform. Can. J. Remote Sens., 28(3): 510–516.

    Article  Google Scholar 

  • Freilich M H, Chelton D B. 1986. Wavenumber spectra of pacific winds measured by the Seasat scatterometer. J. Phys. Oceanogr., 16(4): 741–757.

    Article  Google Scholar 

  • Garratt J R. 1990. The internal boundary layer-a review. Boundary-Layer Meteorology, 50(1–4): 171–203.

    Article  Google Scholar 

  • Genovese S J, Witman J D. 2004. Wind-mediated diel variation in flow speed in a Jamaican back reef environment: Effects on ecological processes. Bull. Mar. Sci., 75(2): 281–293.

    Google Scholar 

  • Gerling T W. 1986. Structure of the surface wind field from the Seasat SAR. J. Geophys. Res-Oceans, 91(C2): 2 308–2 320, http://dx.doi.org/10.1029/JC091iC02p02308.

    Article  Google Scholar 

  • Haarpaintner J. 1999. The Storfjorden polynya: ERS-2 SAR observations and overview. Polar Research, 18(8): 175–182, http://dx.doi.org/10.1111/j.1751-8369.1999.tb00290.x.

    Article  Google Scholar 

  • Hasager C B, Nielsen M, Astrup P, Barthelmie R, Dellwik E, Jensen N O, Jørgensen B H, Pryor S C, Rathmann O, Furevik B R. 2005. Offshore wind resource estimation from satellite SAR wind field maps. Wind Energy, 8(4): 403–419.

    Article  Google Scholar 

  • Horstmann J, Koch W, Lehner S, Tonboe R. 2000a. Mapping of mesoscale wind field using RADARSAT-1 ScanSAR images. IEEE Conference and Exhibition Oceans 2000MTS, 2: 1 321–1 327, http://dx.doi.org/10.1109/OCEANS.2000.881787.

    Google Scholar 

  • Horstmann J, Koch W, Lehner S, Tonboe R. 2000b. Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization. IEEE Trans. Geosci. Remote Sens., 38(5): 2 122–2 131.

    Article  Google Scholar 

  • Horstmann J, Koch W, Lehner S, Tonboe R. 2002. Ocean winds from RADARSAT-1 ScanSAR. Can. J. Remote Sens., 28(3): 524–533.

    Article  Google Scholar 

  • Horstmann J, Koch W, Lehner S. 2004. Ocean wind field retrieved from the advanced synthetic aperture radar aboard ENVISAT. Ocean Dyn., 54(6): 570–576.

    Article  Google Scholar 

  • Horstmann J, Koch W. 2005. Measurement of ocean surface winds using synthetic aperture radars. IEEE J. Ocean Eng., 30(3): 508–515.

    Article  Google Scholar 

  • Horstmann J, Thompson D R, Monaldo F, Iris S, Graber H C. 2005. Can synthetic aperture radars be used to estimate hurricane force winds. Geophys. Res. Lett., 32(22): 1–5, http://dx.doi.org/10.1029/2005GL023992.

    Google Scholar 

  • Johannessen J A. 2000. Coastal observing systems: the role of synthetic aperture radar. Johns Hopkins A PL Tech nical Dig est, 21: 7–14.

    Google Scholar 

  • Katsaros K, Vachon P, Lio W, Black P. 2002. Microwave remote sensing of tropical cyclones from space. J. Oceanogr., 58: 137–151.

    Article  Google Scholar 

  • Kerbaol V, Chapron B, Vachon P W. 1998. Analysis of ERS-1/2 synthetic aperture radar wave mode imagettes. J. Geophys. Res-Oceans, 103(C4): 7 833–7 846, http://dx.doi.org/10.1029/97JC01579.

    Article  Google Scholar 

  • Kim D J, Moon W M. 2002. Estimation of sea surface wind vector using RADARSAT data. Remote Sens. Environ., 80(1): 55–64.

    Article  Google Scholar 

  • Koch W. 2004. Directional analysis of SAR images aiming at wind direction. IEEE Trans. Geosci. Remote Sens., 42(4): 702–710.

    Article  Google Scholar 

  • Korsbakken E, Johannessen J A, Johannessen O M. 1998. Coastal wind field retrievals from ERS synthetic aperture radar images. J. Geophys. Res-Oceans, 103(C4): 7 857–7 874, http://dx.doi.org/10.1029/97JC02580.

    Article  Google Scholar 

  • Laur H, Bally P, Meadows P, Sanchez J, Schaettler B, Lopinto E, Esteban D. 2004. Derivation of the Backscattering Coefficient in ESA ERS SAR PRI Products. European Space Agency, Frascati.

    Google Scholar 

  • Lehner S, Schulz-Stellenfleth J, Schattler B, Breit H, Horstmann J. 2000. Wind and wave measurements using complex ERS-2 SAR wave mode data. IEEE Trans. Geosci. Remote Sens., 38(5): 2 246–2 257.

    Article  Google Scholar 

  • Lin H, Xu Q, Zheng Q. 2008. An overview on SAR measurements of sea surface wind. Progress in Natural Science, 18(8): 913–919.

    Article  Google Scholar 

  • Meadows P J, Rosich B, Fernandez D E. 2000. The performance of the ERS-2 Synthetic Aperture Radar. In Proc. of the ERSENVISAT Symposium. Goteborg, Sweden.

    Google Scholar 

  • Monaldo F M, Thompson D R, Pichel W G, Clemente-Colon P. 2004. A systematic comparison of QuikSCAT and SAR ocean surface wind speeds. IEEE Trans. Geosci. Remote Sens., 42(2): 283–291.

    Article  Google Scholar 

  • Monaldo F M. 2000. The Alaska SAR demonstration and nearreal-time synthetic aperture radar winds. Johns Hopkins A PL Tech nical Dig est, 21: 75–84.

    Google Scholar 

  • Moon J, Hirose N, Yoon J, Pang I. 2010. Offshore detachment process of the low-Salinity water around Changjiang bank in the East China Sea. J. Phys. Oceanogr., 5(40): 1 035–1 053.

    Article  Google Scholar 

  • Rung Z, Li M. 2012. Tidal effects on the bulge region of Changjiang River plume. Estuar. Coast. Shelf Sci., 97: 149–160.

    Article  Google Scholar 

  • Sikora T D, Young G S, Beal R C, Edson J B. 1995. Use of spaceborne synthetic aperture radar imagery of the sea surface in detecting the presence and structure of the convective marine atmospheric boundary layer. Mon. Wea. Rev., 123(12): 3 623–3 632.

    Article  Google Scholar 

  • Stoffelen A, Anderson D. 1997. Scatterometer data interpretation: estimation and validation of the transfer function CMOD4. J. Geophys. Res., 102(C3): 5 767–5 780, http://dx.doi.org/10.1029/96JC02860.

    Article  Google Scholar 

  • Stull R B. 1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, New York.

    Book  Google Scholar 

  • Thompson D R, Elfouhaily T M, Chapron B. 1999. Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. IEEE International Geosci. Remote Sens. Symposium Proceedings, 3: 1 671–1 673.

    Google Scholar 

  • Vachon P W, Dobson F W. 1996. Validation of wind vector retrieval from ERS-1 SAR images over the ocean. The Glob al Atmos phere and Ocean Sys tem, 5(2): 177–187.

    Google Scholar 

  • Valenzuela G R. 1978. Theories for the interaction of electromagnetic and oceanic waves-a review. Bound-Layer Meteorol., 13(1–4): 61–85, http://dx.doi.org/10.1007/BF00913863.

    Article  Google Scholar 

  • Wackerman C C, Rufenach C L, Shuchman R A, Johannessen J A, Davidson K L. 1996. Wind vector retrieval using ERS-1 synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens., 34(6): 1 343–1 352.

    Article  Google Scholar 

  • Wright J. 1966. Backscattering from capillary waves with application to sea clutter. IEEE Trans. Antennas Propag., 14(6): 749–754.

    Article  Google Scholar 

  • Wu H, Zhu J R, Shen J, Wang H. 2011. Tidal modulation on the Changjiang River plume in summer. J. Geophys. Res-Oceans, 116: C08017, http://dx.doi.org/10.1029/2011JC007209.

    Google Scholar 

  • Wu H, Zhu J R. 2010. Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to saltwater intrusion in the Changjiang estuary. Ocean Model., 33(1–2): 33–51.

    Article  Google Scholar 

  • Young G S, Sikora T N, Winstead N S. 2005. Use of synthetic aperture radar in finescale surface analysis of synopticscale fronts at sea. Wea. Forecasting, 20(3): 311–327, http://dx.doi.org/10.1175/WAF853.1.

    Article  Google Scholar 

  • Zhu J R, Li Y P, Shen H T. 1997. Numerical simulation of the wind field’s impact on the expansion of the Changjiang River diluted water in summer. Oceanol. Limnol. Sin., 28(1): 72–79. (in Chinese with English abstract)

    Google Scholar 

  • Zink M, Torres R, Buck C H, Rosich B, Closa J. 2002. The advanced SAR system on ENVISAT: mission status. Proceedings 4th European Conference on Synthetic Aperture Radar. p.175.

    Google Scholar 

  • Zou Q, He Y, Perrie W, Vachon P W. 2007. Wind-vector estimation for RADARSAT-1 SAR images: validation of wind-direction estimates based upon geometry diversity. IEEE Trans. Geosci. Remote Sens. Lett., 4(1): 176–180.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxuan Zhou  (周云轩).

Additional information

Supported by the National Basic Research Program of China (973 Program) (No. 2010CB951204) and the State Key Laboratory of Estuarine and Coastal Research grant (No. SKLEC-2012KYYW02)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhou, Y., Zhu, J. et al. Deriving Changjiang coastal zone wind from C-band SAR and its application to salinity simulation. Chin. J. Ocean. Limnol. 32, 946–957 (2014). https://doi.org/10.1007/s00343-014-3253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-3253-9

Key word

Navigation