Skip to main content
Log in

Mean properties of mesoscale eddies in the Kuroshio recirculation region

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Using a 19-year altimetric dataset, the mean properties and spatiotemporal variations of eddies in the Kuroshio recirculation region are examined. A total of 2 001 cyclonic tracks and 1 847 anticyclonic tracks were identified using a geometry-based eddy detection method. The mean radius was 57 km for cyclonic eddies and was 61 km for anticyclonic eddies, respectively, and the mean lifetime was about 10 weeks for both type eddies. There were asymmetric spatial distributions for eddy generation and eddy termination, which were domain-dependent. Mean eddy generation rates were 2.0 per week for cyclonic eddies and were 1.9 per week for anticyclonic eddies. Both type eddies tended to deform during their lifetime and had different propagation characteristics, which mainly propagated westward and southwestward with velocities 4.0–9.9 cm/s, in the Kuroshio recirculation region. Further discussion illustrates that the eddy westward speed maybe influenced by the combined effect of vertical shear of horizontal currents and nonlinearity of eddy. To better understand the evolution of eddy tracks, a total of 134 long-lived tracks (lifetime ≥20 weeks) were examined. Comparison between short-span eddies (lifetime ≥4 weeks and <20 weeks) and long-lived eddies is also conducted and the result shows that the short-span and long-lived eddies have similar time evolution. Finally, eddy seasonal variations and interannual changes are discussed. Correlation analysis shows that eddy activity is sensitive to the wind stress curl and meridional gradient of sea surface temperature on interannual timescales. Besides, the strength and orientation of background flows also have impacts on the eddy genesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki S, Imawaki S. 1996. Eddy activities of the surface layer in the Western North Pacific detected by satellite altimeter and radiometer. J. Oceanogr., 52: 457–474.

    Article  Google Scholar 

  • AVISO. 2008. SSALTO/DUCAS User Handbook: (M)SLA and (M)ADT Near-Real Time and Delayed Time Products. Aviso Altimetry, Ramonville St. Agne, France. 32p.

    Google Scholar 

  • Balmaseda M A, Vidard A, Anderson D L T. 2008. The ECMWF ocean analysis system: ORA-S3. Mon. Weather Rev., 136: 3 018–3 034.

    Article  Google Scholar 

  • Chaigneau A, Eldin G, Dewitte B. 2009. Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Prog. Oceanogr., 83: 117–123.

    Article  Google Scholar 

  • Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatiotemporal patterns. Prog. Oceanogr., 79: 106–119.

    Article  Google Scholar 

  • Chelton D B, de Szoke R A, Schlax M G, Naggar K EI, Siwertz N. 1998. Geographic variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28: 433–460.

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M, deSzoeke R A. 2007. Global observations of large oceanic eddies, Geophys. Res. Lett., 34: L15606, http://dx.doi.org/10.1029/2007GL030812.

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91: 167–216.

    Article  Google Scholar 

  • Chen G X, Hou Y J, Chu X Q. 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res., 116: C06018, http://dx.doi.org/10.1029/2010JC006716.

    Google Scholar 

  • Colin de Verdière A, Tailleux R. 2005. The interaction of a baroclinic mean flow with long Rossby waves. J. Phys. Oceanogr., 35: 865–879.

    Article  Google Scholar 

  • Cushman-Roisin B. 1994. Introduction to Geostrophic Dynamics. Prentice-Hall, Upper Saddle River, NJ. 320p.

    Google Scholar 

  • de Szoeke R A, Chelton D B. 1999. The modification of long planetary waves by homogeneous potential vorticity layers. J. Phys. Oceanogr., 29: 500–511.

    Article  Google Scholar 

  • Drijfhout S S, Walsteijn F H. 1998. Eddy-induced heat transport in a coupled-atmospheric anomaly model. J. Phys. Oceanogr., 28: 250–265.

    Article  Google Scholar 

  • Ducet N, Le Traon P Y, Reverdin G. 2002. Global highresolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105: 19 477–19 498.

    Article  Google Scholar 

  • Early J J, Samelson R M, Chelton D B. 2011. The evolution and propagation of quasi-geostrophic ocean eddies. J. Phys. Oceanogr., 41: 1 535–1 555.

    Article  Google Scholar 

  • Ebuchi N, Hanawa K. 2000. Mesoscale eddies observed by TOLEX-ADCP and TOPEX/POSEIDON altimeter in the Kuroshio recirculation region south of Japan. J. Oceanogr., 56: 43–57.

    Article  Google Scholar 

  • Ebuchi N, Hanawa K. 2001. Trajectory of mesoscale eddies in the Kuroshio recirculation region. J. Oceanogr., 57: 471–480.

    Article  Google Scholar 

  • Ebuchi N, Hanawa K. 2003. Influences of mesoscale eddies on variations of the Kuroshio path south of Japan. J. Oceanogr., 59: 25–36.

    Article  Google Scholar 

  • Griffa A, Lumpkin R, Veneziani M. 2008. Cyclonic and anticyclonic motion in the upper ocean. Geophys. Res. Lett., 35: L01680. http://dx.doi.org/10.1029/2007GL032100.

    Article  Google Scholar 

  • Hwang C, Wu C R, Kao R. 2004. TOPEX/POSEIDON observations of mesoscale eddies over the Subtropical Countercurrent: kinematic characteristics of an anticyclonic eddy and a cyclonic eddy. J. Geophy. Res., 109: C08013, http://dx.doi.org/10.1029/2003JC002026.

    Article  Google Scholar 

  • Itoh S, Yasuda I. 2010. Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension region detected from the distribution of the sea surface height anomaly. J. Phys. Oceanogr., 40: 1 018–1 034.

    Article  Google Scholar 

  • Kobashi F, Kawamura H. 2002. Seasonal variation and instability nature of the North Pacific subtropical countercurrent and the South China Sea. Chin. Sci. Bull., 52: 1 699–1 707.

    Google Scholar 

  • Le Traon P Y, Faugere Y, Hernandez F, Dorandeu J, Mertz F, Ablain M. 2003. Can we merge GEOSAT Follow-On with TOPEX/Poseidon and ERS-2 for an improved description of the ocean circulation? J. Atmos. Oceanic Technol., 20: 889–895.

    Article  Google Scholar 

  • Lin P F. 2005. Statistical Analyses on Mesoscale Eddies in the South China Sea and the Northwest Pacific. Institute of Oceanology, Chinese Academy of Sciences, Dissertation. 86p. (in Chinese)

    Google Scholar 

  • Liu Y, Dong C, Guan Y, Chen Dake, McWilliams J, Nencioli F. 2012. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep-Sea Res. I, 68: 54–67.

    Article  Google Scholar 

  • Mitsudera H, Waseda T, Yoshikawa Y, Taguchi B. 2001. Anticyclonic eddies and Kuroshio meander formation. Geophys. Res. Lett., 28: 2 025–2 028.

    Article  Google Scholar 

  • Nencioli F, Dong C, Dickey T, Washburn L, McWilliams J. 2010. A vector geometry-based eddy detection algorithm and its application to high-resolution numerical model products and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27: 564–579.

    Article  Google Scholar 

  • Pares-Sierra A, White W B, Tai C K. 1993. Wind-driven coastal generation of annual mesoscale eddy activity in the California Current. J. Phys. Oceanogr., 23: 1 110–1 121.

    Article  Google Scholar 

  • Pascual A, Faugere Y, Larnicol G, Le Traon P Y. 2006. Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett., 33: L02611, http://dx.doi.org/10.1029/2005GL024633.

    Article  Google Scholar 

  • Qiu B. 1999. Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29: 2 471–2 486.

    Article  Google Scholar 

  • Qiu B, Chen S M. 2010a. Interannual variability of the North Pacific subtropical countercurrent and its associated mesoscale eddy field. J. Phys. Oceanogr., 40: 213–225.

    Article  Google Scholar 

  • Qiu B, Chen S M. 2010b. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep-Sea Res II., 57: 1 098–1 110.

    Article  Google Scholar 

  • Qiu B, Miao W. 2000. Kuroshio path variations south of Japan: Bimodality as a self-sustained oscillation. J. Phys Oceanogr., 30: 2 124–2 137.

    Article  Google Scholar 

  • Reynolds R W, Smith T M, Liu C, Chelton D B, Casey K S, Schlax M G. 2007. Daily high-resolution-blended analysis for sea surface temperature. J. Climate, 20: 5 473–5 496.

    Article  Google Scholar 

  • Røed L P, Shi X B. 1999. A numerical study of the dynamics and energetics of cool filaments, jets, and eddies off the Iberian Peninsula. J. Geophys. Res., 104: 29 817–29 841.

    Article  Google Scholar 

  • Roemmich D, Gilson J. 2001. Eddy transport of heat and thermocline waters in the North Pacific: a key to interannual/decadal climate variability? J. Phys. Oceanogr., 31: 675–687.

    Article  Google Scholar 

  • Waseda T, Mitsudera H, Taguchi B, Yoshikawa Y. 2003. On the eddy-Kuroshio interaction: meander formation process. J. Geophys Res., 108, http://dx.doi.org/10.1029/2002JC001583.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Ma  (马利斌).

Additional information

Supported by the National Natural Science Foundation of China (No. 41230420), the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX3-EW-201) and the Basic Research Program of Science and Technology Projects of Qingdao (No. 11-14-95-jch)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Wang, Q. Mean properties of mesoscale eddies in the Kuroshio recirculation region. Chin. J. Ocean. Limnol. 32, 681–702 (2014). https://doi.org/10.1007/s00343-014-3029-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-3029-2

Keyword

Navigation