Skip to main content
Log in

First-principles study of laser absorption characteristics of five typical explosives

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The ultrafast high peak powers of femtosecond laser ablation can be used to safely process explosives by precisely controlling the laser energy and focus. The laser absorption mechanisms and capacities are wavelength dependent due to the different compositions and structures of explosives. The absorption characteristics directly affect the efficiency and safety of femtosecond laser processing. Therefore, the optical absorption mechanisms and characteristics of five typical explosives excited by femtosecond lasers at different wavelengths have been studied. Absorption spectra of β-phase octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (β-HMX), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), cyclotrimethylenetrinitramine (RDX), pentaerythritol tetranitrate (PETN) and 2,4,6-trinitrotoluene (TNT) were obtained by quantum chemistry calculation. With infrared (IR) lasers, explosives absorb energy mainly via vibrational excitation in functional groups, which subsequently leads to bond breaking. Calculations indicated that the absorption maxima attributed to vibrations in these explosives were all concentrated between 3125 and 3571 nm. Ultraviolet–visible (UV–vis) lasers could be used to excite the explosives via valence electron transitions, which could trigger chemical reactions. β-HMX, RDX and PETN had narrow absorption spectra with strong peaks concentrated around 170–225 nm, while TATB and TNT had broad absorption ranges with strong peaks around 230–300 nm. These bands were far from the widely used 810 nm near-infrared femtosecond laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data presented in this study are available in the supplementary material.

References

  1. E. Roos, J. Benterou, R. Lee, F. Roeske, B. Stuart, Femtosecond laser interaction with energetic materials. SPIE 2002, 415–423 (2002)

    Google Scholar 

  2. S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Finer features for functional microdevices. Nature 2001, 412 (2001)

    Google Scholar 

  3. J.A. Palmer, E.J. Welle, An ultra-short pulse laser lathe for axisymmetric micromachining of explosives. Proc. SPIE Int. Soc. Opt. Eng. 6460, 646015 (2007)

    Google Scholar 

  4. S.D. Mcgrane, A. Grieco, K.J. Ramos, D.E. Hooks, D.S. Moore, Femtosecond micromachining of internal voids in high explosive crystals for studies of hot spot initiation. J. Appl. Phys. 105(7), 73505 (2009)

    Article  Google Scholar 

  5. K. Batra, S. Zahn, T. Heine, Benchmark of simplified time-dependent density functional theory for UV–Vis spectral properties of porphyrinoids. Adv. Theory Simul. 3(1), 1900192 (2020)

    Article  Google Scholar 

  6. A.A. Tsyganenko, T.N. Kompaniets, R.G. Novikov et al., Resonance laser-induced processes and energy transformations in adsorbed layers. Curr. Opin. Chem. Eng. 24, 69–78 (2019)

    Article  Google Scholar 

  7. B. Adelmann, R. Hellmann, SiC absorption of near-infrared laser radiation at high temperatures. Appl. Phys. A 122(7), 642 (2016)

    Article  ADS  Google Scholar 

  8. C. Ravikumar, I.H. Joe, D. Sajan, Vibrational contributions to the second-order nonlinear optical properties of π-conjugated structure acetoacetanilide. Chem. Phys. 369(1), 1–7 (2010)

    Article  Google Scholar 

  9. N. Goto, H. Yamawaki, K. Tonokura, K. Wakabayashi, M. Yoshida, M. Koshi, Chemical reactions and other behaviors of high energetic materials under static ultrahigh pressures. Mater. Sci. Forum 465–466, 189–194 (2004)

    Article  Google Scholar 

  10. S. Zheng, Z. Xiao-Qing, W. Wei-Gang, Ge. Mao-Fa, W. Dian-Xun, Photoelectron spectroscopy and UV absorption spectroscopy studies on some nitrogen catenation compounds. Acta Chim. Sin. 64(003), 218–222 (2006)

    Google Scholar 

  11. J.K. Cooper, C.D. Grant, J.Z. Zhang, Experimental and TD-DFT study of optical absorption of six explosive molecules: RDX, HMX, PETN, TNT, TATP, and HMTD. J. Phys. Chem. A 117, 29 (2013)

    Article  ADS  Google Scholar 

  12. M. Karabacak, M. Cinar, Z. Unal, M. Kurt, FT-IR, UV spectroscopic and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 2-aminoterephthalic acid. J. Mol. Struct. 982(1–3), 22–27 (2010)

    Article  ADS  Google Scholar 

  13. J. Yuan, G. Ji, X. Chen, D. Wei, W. Qiang, Phase transition, thermodynamics properties and IR spectrum of α- and γ-RDX: first principles and MD studies. Chem. Phys. Lett. 644, 250–254 (2016)

    Article  ADS  Google Scholar 

  14. E. Runge, E.K. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52(12), 997 (1984)

    Article  ADS  Google Scholar 

  15. M.P. Siedband, J.G. Webster, Radiology: The Physiological Measurement Handbook (CRC Press, Hoboken, 2014), pp.470–493

    Google Scholar 

  16. A. Bruner, D. LaMaster, K. Lopata, Accelerated broadband spectra using transition dipole decomposition and Pad{\’e} approximants. J. Chem. Theory Comput. 12(8), 3741–3750 (2016)

    Article  Google Scholar 

  17. L. Zheng, N.F. Polizzi, A.R. Dave et al., Where is the electronic oscillator strength? Map** oscillator strength across molecular absorption spectra. J. Phys. Chem. A 120(11), 1933–1943 (2016)

    Article  Google Scholar 

  18. A. Chantzis, A.D. Laurent, C. Adamo, D. Jacquemin, Is the Tamm-Dancoff approximation reliable for the calculation of absorption and fluorescence band shapes? J. Chem. Theory Comput. 9(10), 4517–4525 (2013)

    Article  Google Scholar 

  19. F.C. Bononi, Z. Chen, D. Rocca, O. Andreussi, D. Donadio, Bathochromic Shift in the UV-visible absorption spectra of phenols at ice surfaces: insights from first-principles calculations. J. Phys. Chem. A 124(44), 9288–9298 (2020)

    Article  Google Scholar 

  20. V. Barone, Vibrational spectra of large molecules by density functional computations beyond the harmonic approximation: the case of pyrrole and furan. Chem. Phys. Lett. 383(5–6), 528–532 (2004)

    Article  ADS  Google Scholar 

  21. J.U.R. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, cp2k: atomistic simulations of condensed matter systems. Wiley Interdiscipl. Rev. Comput. Mol. Sci. 4(1), 15–25 (2014)

    Article  Google Scholar 

  22. A. Comas-Vives, Amorphous SiO 2 surface models: energetics of the dehydroxylation process, strain, ab initio atomistic thermodynamics and IR spectroscopic signatures. Phys. Chem. Chem. Phys. 18(10), 7475–7482 (2016)

    Article  Google Scholar 

  23. M.H. Palmer, M. Biczysko, K.A. Peterson, C.S. Stapleton, S.P. Wells, Structural and vibrational properties of iodopentafluorobenzene: a combined Raman and infrared spectral and theoretical study. J. Phys. Chem. A 121(41), 7917–7924 (2017)

    Article  Google Scholar 

  24. M. Gaigeot, R. Spezia, Theoretical methods for vibrational spectroscopy and collision induced dissociation in the gas phase. Gas-Phase IR Spectrosc. Struct. Biol. Mol. 2014, 99–151 (2014)

    Article  Google Scholar 

  25. J. Neugebauer, M. Reiher, C. Kind, B.A. Hess, Quantum chemical calculation of vibrational spectra of large molecules—Raman and IR spectra for buckminsterfullerene. J. Comput. Chem. 23(9), 895–910 (2002)

    Article  Google Scholar 

  26. M. Thomas, M. Brehm, R. Fligg, P. Hringer, B. Kirchner, Computing vibrational spectra from ab initio molecular dynamics. Phys. Chem. Chem. Phys. 15(18), 6608–6622 (2013)

    Article  Google Scholar 

  27. J.R. Deschamps, M. Frisch, D. Parrish, Thermal expansion of HMX. J. Chem. Crystallogr. 41(7), 966–970 (2011)

    Article  Google Scholar 

  28. H.H. Cady, A.C. Larson, The crystal structure of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene. Acta Crystallogr. A 18(3), 485–496 (1965)

    Article  Google Scholar 

  29. Q.J. Axthammer, D. Izsak, T.M. Klapotke, C. Pfluger, J. Stierstorfer, CCDC 927276: experimental crystal structure determination. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 61, 449 (2013). https://doi.org/10.5517/cc103x45

    Article  Google Scholar 

  30. H.H. Cady, A.C. Larson, Pentaerythritol tetranitrate II: its crystal structure and transformation to PETN I; an algorithm for refinement of crystal structures with poor data. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 31(7), 1864–1869 (1975)

    Article  ADS  Google Scholar 

  31. R.M. Vrcelj, J.N. Sherwood, A.R. Kennedy, H.G. Gallagher, T. Gelbrich, CCDC 227800: experimental crystal structure determination. J. Coord. Chem. 71(14), 2146–2164 (2004). https://doi.org/10.5517/cc7n1d9

    Article  Google Scholar 

  32. K.U. Hne, M. Iannuzzi, M. Del-Ben, V.V. Rybkin, P. Seewald, F. Stein, T. Laino, R.Z. Khaliullin, U.O. Sch, F. Schiffmann et al., CP2K: An electronic structure and molecular dynamics software package-Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 152(19), 194103 (2020)

    Article  ADS  Google Scholar 

  33. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyser. J. Comput. Chem. 33(5), 580–592 (2012)

    Article  Google Scholar 

  34. H.H. Cady, A.C. Larson, D.T. Cromer, The crystal structure of α-HMX and a refinement of the structure of β-HMX. Acta Crystallogr. A 16(7), 617–623 (1963)

    Article  Google Scholar 

  35. G. Schaftenaar, J.H. Noordik, Molden: a pre- and post-processing program for molecular and electronic structures. J. Comput. Aided Mol. Design 14(2), 123–134 (2000)

    Article  ADS  Google Scholar 

  36. G. Schaftenaar, E. Vlieg, G. Vriend, Molden 2.0: quantum chemistry meets proteins. J. Comput.-Aided Mol. Design 31, 787 (2017)

    Article  ADS  Google Scholar 

  37. C.T. Konek, J.M. Lightstone, J. Wilkinson et al., Second harmonic generation (SHG) studies of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB)//AIP conference proceedings. Am. Inst. Phys. 1195(1), 1321–1324 (2009)

    ADS  Google Scholar 

  38. L. Xiuhua, Z. Fanghua, H. Xiaobo, D. Meng, X. Quanmin, Studies on the HPLC analysis conditions of nitryl compounds. Environ. Chem. 31(3), 385–389 (2012)

    Google Scholar 

  39. J. Zhang, G. Zhang, Z. Xu et al., Analysis of crystal purity of Octogen by Fourier transform infrared spectroscopy. Vib. Spectrosc. 123, 103461 (2022)

    Article  Google Scholar 

  40. T.G. Towns, Vibrational spectrum of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene. Spectrochim. Acta, Part A 39(9), 801–804 (1983)

    Article  ADS  Google Scholar 

  41. X. Jia, Q. Cao, W. Guo et al., Synthesis, thermolysis, and solid spherical of RDX/PMMA energetic composite materials. J. Mater. Sci. Mater. Electron. 30, 20166–20173 (2019). https://doi.org/10.1007/s10854-019-02399-2

    Article  Google Scholar 

  42. M.S. Lamraski, S. Babaee, S.M. Pourmortazavi, Study of optical properties, thermal kinetic decomposition and stability of coated PETN-litholrubine nano-composite via solvent/none-solvent method using Taguchi experimental design. J. Optoelectron. Nanostruct. 4, 11–15 (2019)

    Google Scholar 

  43. L.F. Alzate, C.M. Ramos, N.M. Hernández, S.P. Hernández, N. Mina, The vibrational spectroscopic signature of TNT in clay minerals. Vib. Spectrosc. 42(2), 357–368 (2006)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 11832006).

Author information

Authors and Affiliations

Authors

Contributions

Wu Junying: conceptualization, project administration, supervision, methodology, resources. Shang Yiping: software, writing—original draft, visualization. Li Junjian: software, writing—review & editing, visualization. Yang Lijun: conceptualization, methodology, software, writing—review & editing, visualization. Muhammad Mudassar: writing—review & editing. Chen Lang: funding acquisition, project administration, supervision.

Corresponding author

Correspondence to Junying Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Institutional review board statement

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 122 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Shang, Y., Li, J. et al. First-principles study of laser absorption characteristics of five typical explosives. Appl. Phys. B 130, 67 (2024). https://doi.org/10.1007/s00340-024-08202-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08202-3

Navigation