Skip to main content
Log in

Laser-assisted decay of charged mesons into leptonic modes

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The two-body leptonic decays of both light and heavy-charged mesons \(X_{l2}^{\pm }\) are investigated in the first Born approximation in the presence of a monochromatic and circularly polarized laser field. As a result of using Volkov functions, the analytic study of these processes has brought a change in the parameters associated with each decay process. The decay width, lifetime, and branching ratio of each decay process are affected by increasing the classical parameter \(\xi\) of the meson. A comparison between the matter decay \(X^{+}_{l2}\) and that of the anti-matter \(X^{-}_{l2}\) in the presence of a circularly polarized laser wave, indicates that increasing laser field strength (increasing the classical parameter \(\xi\) ) can induce a slight dominance of matter over antimatter or vise versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No data are associated with this article.

References

  1. T.H. Maiman, Nature 187, 493 (1960)

    Article  ADS  Google Scholar 

  2. M.A. Shampo, R.A. Kyle, D.P. Steensmab, Mayo Clin. Proc. 87(1), e3 (2012). https://doi.org/10.1016/j.mayocp.2011.11.003

    Article  Google Scholar 

  3. Altarelli M., Assmann R., Burkart F., Heinemann B., Heinzl T., Koffas T., Maier A. R., Reis D., Ringwald A., and Wing M., (2019) (available at: https://arxiv.org/abs/1905.00059)

  4. S. Gales et al., Rep. Prog. Phys. 81, 094301 (2018)

    Article  ADS  Google Scholar 

  5. C. Bula et al., Phys. Rev. Lett. 76, 3116 (1966)

    Article  ADS  Google Scholar 

  6. D.L. Burke et al., Phys. Rev. Lett. 79, 1626 (1997)

    Article  ADS  Google Scholar 

  7. G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  8. V. Bagnoud et al., Appl. Phys. B 100, 137 (2010)

    Article  ADS  Google Scholar 

  9. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012)

    Article  ADS  Google Scholar 

  10. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936)

    Article  ADS  Google Scholar 

  11. D.B. Blaschke et al., Phys. Rev. Lett. 96, 140402 (2006)

    Article  ADS  Google Scholar 

  12. F. Sauter, Z. Phys. 69, 742–764 (1931)

    Article  ADS  Google Scholar 

  13. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  14. E. Brezin, C. Itzykson, Phys. Rev. D 2, 1191 (1970)

    Article  ADS  Google Scholar 

  15. M.H. Mittleman, Introduction to the Theory of Laser-Atom Interactions (Plenum, New York, 1982)

    Book  Google Scholar 

  16. F.H.M. Faisal, Theory of Multiphoton Processes (Plenum, New York, 1987)

    Book  Google Scholar 

  17. C.J. Joachain, N.J. Kylstra, R.M. Potvliege, Atoms in Intense Laser Fields (Cambridge University Press, Cambridge, England, 2012)

    Google Scholar 

  18. D. Andrick, L. Langhans, J. Phys. B 9, L459 (1976)

    Article  ADS  Google Scholar 

  19. A. Weingartshofer, J.K. Holmes, G. Caudle, E.M. Clarke, H. Krüger, Phys. Rev. Lett. 39, 269 (1977)

  20. Castañeda Cortés H. M., Laser assisted \(\alpha\)-decay (Dissertation, University of Heidelberg, 2012, p. 135)

  21. H. Cortes, M. Castaneda, C. Muller, C.H. Keitel, A. Palffy, Phys. Lett. B 723, 401 (2013)

    Article  ADS  Google Scholar 

  22. Ş Mişicu, M. Rizea, J. Phys. G: Nucl. Phys. 40, 095101 (2013)

    Article  ADS  Google Scholar 

  23. Ş Mişicu, M. Rizea, Open Phys. 14, 81 (2016)

    Article  Google Scholar 

  24. D.S. Delion, S.A. Ghinescu, Phys. Rev. Lett. 119, 202501 (2017)

    Article  ADS  Google Scholar 

  25. I. Dahiri, M. Jakha, S. Mouslih, B. Manaut, S. Taj, Y. Attaourti, Laser Phys. Lett. 18, 096001 (2021)

    Article  ADS  Google Scholar 

  26. I. Dahiri, M. Baouahi, M. Jakha, S. Mouslih, B. Manaut, S. Taj, Chin. J. Phys. 77, 1691–1700 (2022)

    Article  Google Scholar 

  27. I.F. Barna, S. Varró, Laser and Particle Beams 33, 299 (2015)

    Article  ADS  Google Scholar 

  28. Ş Mişicu, F. Carstoiu, Eur. Phys. J. A 54, 90 (2018)

    Article  ADS  Google Scholar 

  29. Ş Mişicu, M. Rizea, J. Phys. G 46, 115106 (2019)

    Article  ADS  Google Scholar 

  30. F. Ehlotzky et al., Rep. Prog. Phys. 72, 046401 (2009)

    Article  ADS  Google Scholar 

  31. Y. Attaourti, B. Manaut, Phys. Rev. A 68, 067401 (2003)

    Article  ADS  Google Scholar 

  32. B. Manaut, S. Taj, Y. Attaourti, Phys. Rev. A 71, 043401 (2005)

    Article  ADS  Google Scholar 

  33. S. Taj, B. Manaut, M. El Idrissi, L. Oufni, Chin. J. Phys. 49, 1164 (2011)

    Google Scholar 

  34. S. Taj, B. Manaut, E. Hrour, M. El Idrissi, Acta Phys. Pol. A 136, 78 (2019)

    Article  ADS  Google Scholar 

  35. M. El Idrissi, S. Taj, B. Manaut, Y. Attaourti, L. Oufni, J. At. Mol. Sci. 4, 95 (2013)

    Google Scholar 

  36. Y. Attaourti, B. Manaut, A. Makhoute, Phys. Rev. A 69, 063407 (2004)

    Article  ADS  Google Scholar 

  37. B. Manaut, Y. Attaourti, S. Taj, S. Elhandi, Phys. Scr. 80, 025304 (2009)

    Article  ADS  Google Scholar 

  38. M. Ouali, M. Ouhammou, S. Taj, R. Benbrik, B. Manaut, Phys. Lett. B 823, 136761 (2021)

    Article  Google Scholar 

  39. M. Ouhammou, M. Ouali, S. Taj, B. Manaut, Laser Phys. Lett. 18, 076002 (2021)

    Article  ADS  Google Scholar 

  40. M. Ouali, M. Ouhammou, Y. Mekaoui, S. Taj, B. Manaut, Chin. J. Phys. 77, 1182–1196 (2022)

    Article  Google Scholar 

  41. Y. Mekaoui, M. Jakha, S. Mouslih, B. Manaut, R. Benbrik, S. Taj, Laser Phys. Lett. 19(6), 066003 (2022)

    Article  ADS  Google Scholar 

  42. S. Mouslih, M. Jakha, S. Taj, B. Manaut, E. Siher, Phys. Rev. D 102, 073006 (2020)

    Article  ADS  Google Scholar 

  43. M. Jakha, S. Mouslih, S. Taj, B. Manaut, Laser Phys. Lett. 18, 016002 (2021)

    Article  ADS  Google Scholar 

  44. M. Baouahi, I. Dahiri, M. Ouali, B. Manaut, R. Benbrik, S. Taj, Europhys. Lett. 138, 14003 (2022)

    Article  ADS  Google Scholar 

  45. M. Baouahi, M. Ouali, M. Jakha, S. Mouslih, Y. Attaourti, B. Manaut, S. Taj, R. Benbrik, Laser Phys. Lett. 18, 106001 (2021)

    Article  ADS  Google Scholar 

  46. J. Schwinger, Phys. Rev. 82, 914 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  47. G. Lüders, Kong. Dan. Vid. Sel. Mat. Fys. Med. 28, 1–17 (1954)

    Google Scholar 

  48. Pauli W., in Niels Bohr and the Development of Physics (Pergamon Press, New York, 1955, p. 30)

  49. G. Lüders, Ann. Phys. 2, 1–15 (1957)

    Article  ADS  Google Scholar 

  50. T.D. Lee, C.S. Wu, Annu. Rev. Nuclear Sci. 15, 381–476 (1965)

    Article  ADS  Google Scholar 

  51. G. Lüders, Ann. Phys. 2, 1–15 (1957)

    Article  ADS  Google Scholar 

  52. G. Lüders, Kong. Dan. Vid. Sel. Mat. Fys. Med. 28, 1–17 (1954)

    Google Scholar 

  53. G. Lüders, B. Zumino, Phys. Rev. 106, 385–386 (1957)

    Article  ADS  Google Scholar 

  54. G. Lüders, B. Zumino, Phys. Rev. 106, 385 (1957)

    Article  ADS  Google Scholar 

  55. D.M. Volkov, Z. Phys. 94, 250 (1935)

    Article  ADS  Google Scholar 

  56. W. Greiner, B. Müller, Gauge Theory of Weak Interactions, 3rd edn. (Springer, Berlin, 2000)

    Book  Google Scholar 

  57. D.L. Landau, M.E. Lifshitz, Classical Theory of Fields, 2nd edn. (Addison-Wesley, Reading, Mass., 1962)

    Google Scholar 

  58. Andrews G.E., Askey R., and Roy R., Special functions (Cambridge university press 1999, p. 211)

  59. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)

    Google Scholar 

  60. V. Shtabovenko, R. Mertig, F. Orellana, Comput. Phys. Commun. 256, 107478 (2020)

    Article  MathSciNet  Google Scholar 

  61. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, (1982) Quantum Electrodynamics, 2nd ed. (Butterworth-Heinemann, Oxford) p.451

  62. A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H. Taya, G. Torgrimsson, Phys. Rep. 1010, 1–138 (2023)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MO, MB, and ID prepared the figures and wrote the main manuscript text. ST, YM, MM and BM deal with data analysis. All authors reviewed the manuscript.

Corresponding authors

Correspondence to M. Ouali or S. Taj.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baouahi, M., Dahiri, I., Ouali, M. et al. Laser-assisted decay of charged mesons into leptonic modes. Appl. Phys. B 130, 54 (2024). https://doi.org/10.1007/s00340-024-08184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08184-2

Navigation