Skip to main content
Log in

Enhancing laser-driven proton acceleration using a lithium target

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser–plasma acceleration of ions has been of interest for the past few decades. An effective way to enhance laser-driven proton acceleration is to improve laser absorption in plasmas. In this study, we show that lithium (Li) is the most promising candidate for accelerating protons with better absorption among target light weight materials used for ion acceleration. For this, two-dimensional particle-in-cell (PIC) simulations were performed to investigate the acceleration of ions and protons with a high-power laser (with an amplitude a0=10 and a pulse duration of 30 fs) to determine the optimal lithium target thickness for maximum energies. The maximum energy of Li ions is achievable with a target thickness of 40 nm, while the maximum proton energy can be achieved for a 30nm thickness of the target. Moreover, a series of PIC simulations were also performed with targets of different atomic numbers and thicknesses to understand lithium's performance for the acceleration of protons. Compared to other targets, such as Al (Aluminum), C (Carbon), and Be (Beryllium), the Li target has a significant enhancement in proton energy, which can be used as an alternative target to enhance proton and ion energies in future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon reasonable request.

References

  1. M. Almassarani, B. Beleites, F. Ronneberger, G.G. Paulus, A. Gopal, Plasma 4, 670 (2021)

    Article  Google Scholar 

  2. G. Costa, L. Torrisi, Radiat. Eff. Defects Solids 174, 11 (2019)

    Article  Google Scholar 

  3. S.S. Bulanov, V.Y. Bychenkov, V. Chvykov, G. Kalinchenko, D.W. Litzenberg, T. Matsuoka, A.G.R. Thomas, L. Willingale, V. Yanovsky, K. Krushelnick, A. Maksimchuk, Phys. Plasmas 17, 043105 (2010)

    Article  ADS  Google Scholar 

  4. S.S. Bulanov, A. Brantov, V.Y. Bychenkov, V. Chvykov, G. Kalinchenko, Med. Phys. 35, 1770 (2008)

    Article  Google Scholar 

  5. X.P. Zhu, L. Ding, Q. Zhang, Y. Isakova, Y. Bondarenko, A.I. Pushkarev, M.K. Lei, Laser Part. Beams 35, 587 (2017)

    Article  ADS  Google Scholar 

  6. M. Passoni, F.M. Arioli, L. Cialfi, D. Dellasega, L. Fedeli, A. Formenti, A.C. Giovannelli, A. Maffini, F. Mirani, A. Pazzaglia, A. Tentori, D. Vavassori, M. Zavelani-Rossi, V. Russo, Plasma Phys. Control. Fusion 62, 014022 (2019)

    Article  ADS  Google Scholar 

  7. M. Borghesi, D.H. Campbell, A. Schiavi, M.G. Haines, O. Willi, A.J. MacKinnon, P. Patel, L.A. Gizzi, M. Galimberti, R.J. Clarke, F. Pegoraro, H. Ruhl, S. Bulanov, Plasma Phys. 9, 2214 (2002)

    Article  Google Scholar 

  8. B.Y. Sharkov, D.H.H. Hoffmann, A.A. Golubev, Y. Zhao, Matter Radiat. Extremes 1, 28 (2016)

    Article  Google Scholar 

  9. K.W.D. Ledingham, P.R. Bolton, N. Shikazono, C.-M. Charlie Ma, Appl. Sci. 4, 402 (2014)

    Article  Google Scholar 

  10. S.C. Wilks, A.B. Langdon, T.E. Cowan, M. Roth, M. Singh, S. Hatchett, M.H. Key, D. Pennington, A. MacKinnon, R.A. Snavely, Phys. Plasmas 8, 542 (2001)

    Article  ADS  Google Scholar 

  11. T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Phys. Rev. Lett. 92, 175003 (2004)

    Article  ADS  Google Scholar 

  12. L. Yin, B.J. Albright, B.M. Hegelich, K.J. Bowers, K.A. Flippo, T.J.T. Kwan, J.C. Fernández, Phys. Plasmas 14, 056706 (2007)

    Article  ADS  Google Scholar 

  13. Z. Lécz, A. Andreev, Phys. Plasmas 22, 043103 (2015)

    Article  ADS  Google Scholar 

  14. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)

    Article  ADS  Google Scholar 

  15. V.T. Tikhonchuk, Nucl. Instrum. Methods Phys. Res. A 620, 1 (2010)

    Article  ADS  Google Scholar 

  16. O. Culfa, G.J. Tallents, M.E. Korkmaz, A.K. Rossall, E. Wagenaars, C.P. Ridgers, C.D. Murphy, N. Booth, D.C. Carroll, L.A. Wilson, K.L. Lancaster, N.C. Woolsey, Laser Part. Beams 35, 58 (2017)

    Article  ADS  Google Scholar 

  17. M. Moll, M. Schlanges, T. Bornath, V.P. Krainov, New J. Phys. 14, 065010 (2012)

    Google Scholar 

  18. K. Estabrook, W.L. Kruer, Phys. Rev. Lett. 40, 42 (1978)

  19. F. Brunel, Phys. Rev. Lett. 59, 52 (1987)

    Article  ADS  Google Scholar 

  20. S.C. Wilks, W.L. Kruer, M. Tabak, A.B. Langdon, Phys. Rev. Lett. 69, 1383 (1992)

    Article  ADS  Google Scholar 

  21. O. Culfa, G.J. Tallents, A.K. Rossall, E. Wagenaars, C.P. Ridgers, C.D. Murphy, R.J. Dance, R.J. Gray, P. McKenna, C.D.R. Brown, S.F. James, D.J. Hoarty, N. Booth, A.P.L. Robinson, K.L. Lancaster, S.A. Pikuz, A.Y. Faenov, T. Kampfer, K.S. Schulze, I. Uschmann, N.C. Woolsey, Phys. Rev. E 93, 043201 (2016)

    Article  ADS  Google Scholar 

  22. Y.-Q. Cui, W.-M. Wang, Z.-M. Sheng, Y.-T. Li, J. Zhang, Plasma Phys. Control. Fusion 55, 085008 (2013)

    Article  ADS  Google Scholar 

  23. J. Braenze, A.A. Andreev, K. Platonov, M. Klingsporn, L. Ehrentraut, W. Sandner, M. Schnürer, Phys. Rev. Lett. 114, 124801 (2015)

    Article  ADS  Google Scholar 

  24. T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, N.J. Sircombe, P. Gillies, R.G. Evans, H. Schmitz, A.R. Bell, Plasma Phys. Control. Fusion 57, 113001 (2015)

    Article  ADS  Google Scholar 

  25. S. Ikeda, M. Okamura, T. Kanesue, D. Raparia, A. Hershcovitch, K. Yip, K. Takahashi, A. Cannavò, G. Ceccio, Rev. Sci. Instrum. 91, 023304 (2020)

    Article  ADS  Google Scholar 

  26. A. Cannavò, K. Takahashi, M. Okamura, G. Ceccio, T. Kanesue, S. Ikeda, Rev. Sci. Instrum. 91, 033317 (2020)

    Article  ADS  Google Scholar 

  27. G.M. Petrov, J. Davis, Appl. Phys. B 96, 773 (2009)

    Article  ADS  Google Scholar 

  28. P. McKenna, F. Lindau, O. Lundh, D. Neely, A. Persson, C.-G. Wahlström, Philos. Trans. R. Soc. A 364, 711 (2003)

    Article  ADS  Google Scholar 

  29. R.C. Shah, R.P. Johnson, T. Shimada, K.A. Flippo, J.C. Fernandez, B.M. Hegelich, Opt. Lett. 34, 2273 (2009)

    Article  ADS  Google Scholar 

  30. D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, P. McKenna, Appl. Phys. Lett. 89, 021502 (2006)

    Article  ADS  Google Scholar 

  31. D.C. Carroll, O. Tresca, R. Prasad, L. Romagnani, P.S. Foster, P. Gallegos, S. Ter-Avetisyan, J.S. Green, M.J.V. Streeter, N. Dover, C.A.J. Palmer, C.M. Brenner, F.H. Cameron, K.E. Quinn, J. Schreiber, A.P.L. Robinson, T. Baeva, M.N. Quinn, X.H. Yuan, Z. Najmudin, M. Zepf, D. Neely, M. Borghesi, P. McKenna, New J. Phys. 12, 045020 (2010)

    Article  ADS  Google Scholar 

  32. T. Esirkepov, Phys. Rev. Lett. 96, 105001 (2006)

    Article  ADS  Google Scholar 

  33. K.N. Kim, K. Lee, M. Kumar, H.-N. Kim, S.H. Park, Y.U. Jeong, N. Vinokurov, Y.G. Kim, Phys. Plasmas 23, 033119 (2016)

    Article  ADS  Google Scholar 

  34. M. Kumar, K. Lee, H.-N. Kim, W.-J. Ryu, S.H. Park, Y.U. Jeong, AIP Adv. 9, 045304 (2019)

    Article  ADS  Google Scholar 

  35. P. Antici, J. Fuchs, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C.A. Cecchetti, S. Gaillard, L. Romagnani, Y. Sentoku, T. Toncian, O. Willi, P. Audebert, H. Pépin, Phys. Plasmas 14, 033102 (2007)

    Article  Google Scholar 

  36. T. Ceccotti, A. Levy, H. Popescu, F. Reau, P. D’Oliveira, P. Monot, J.P. Geindre, E. Lefebvre, P. Martin, Phys. Rev. Lett. 99, 18 (2007)

    Article  Google Scholar 

  37. S. Fourmaux, S. Buffechoux, B. Albertazzi, D. Capelli, A. Lévy, S. Gnedyuk, L. Lecherbourg, P. Lassonde, S. Payeur, P. Antici, H. Pépin, R.S. Marjoribanks, J. Fuchs, J.C. Kieffer, Phys. Plasmas 20, 013110 (2013)

    Article  ADS  Google Scholar 

  38. Q.L. Dong, Phys. Rev. E 68, 026408 (2003)

    Article  ADS  Google Scholar 

  39. A. Henig, D. Kiefer, K. Markey, D.C. Gautier, K.A. Flippo, S. Letzring, R.P. Johnson, T. Shimada, L. Yin, B.J. Albright, K.J. Bowers, J.C. Fernández, S.G. Rykovanov, H.-C. Wu, M. Zepf, D. Jung, V.K. Liechtenstein, J. Schreiber, D. Habs, B.M. Hegelich, Phys. Rev. Lett. 103, 045002 (2009)

    Article  ADS  Google Scholar 

  40. J.C. Fernández, D. Cort Gautier, C. Huang, S. Palaniyappan, B.J. Albright, W. Bang, G. Dyer, A. Favalli, J.F. Hunter, J. Mendez, M. Roth, M. Swinhoe, P.A. Bradley, O. Deppert, M. Espy, K. Falk, N. Guler, C. Hamilton, B.M. Hegelich, D. Henzlova, K.D. Ianakiev, M. Iliev, R.P. Johnson, A. Kleinschmidt, A.S. Losko, E. McCary, M. Mocko, R.O. Nelson, R. Roycroft, M.A. Santiago Cordoba, V.A. Schanz, G. Schaumann, D.W. Schmidt, A. Sefkow, T. Shimada, T.N. Taddeucci, A. Tebartz, S.C. Vogel, E. Vold Glen, A. Wurden, L. Yin, Phys. Plasmas 24, 56702 (2017)

    Article  Google Scholar 

  41. A. Higginson, R.J. Gray, M. King, R.J. Dance, S.D.R. Williamson, N.M.H. Butler, R. Wilson, R. Capdessus, C. Armstrong, J.S. Green, S.J. Hawkes, P. Martin, W.Q. Wei, S.R. Mirfayzi, X.H. Yuan, S. Kar, M. Borghesi, R.J. Clarke, D. Neely, P. McKenna, Nat. Commun. 9, 724 (2018)

    Article  ADS  Google Scholar 

  42. J. Strehlow, D. Kawahito, M. Bailly-Grandvaux, F.N. Beg, G.M. Petrov, Plasma Phys. Control. Fusion 63, 065011 (2021)

    Article  ADS  Google Scholar 

  43. B.M. Hegelich, I. Pomerantz, L. Yin, H.C. Wu, D. Jung, B.J. Albright, D.C. Gautier, S. Letzring, S. Palaniyappan, R. Shah, K. Allinger, R. Hörlein, J. Schreiber, D. Habs, J. Blakeney, G. Dyer, L. Fuller, E. Gaul, E. Mccary, A.R. Meadows, C. Wang, T. Ditmire, J.C. Fernandez, New J. Phys. 15, 085015 (2013)

    Article  ADS  Google Scholar 

  44. D. Sangwan, O. Culfa, C.P. Ridgers, S. Aogaki, D. Stutman, B. Diaconescu, Laser Part. Beams 37, 1 (2019)

    Article  Google Scholar 

  45. L.N. Su, B. Liu, X.X. Lin, F. Liu, F. Du, X.L. Liu, Y. Zheng, X.L. Ge, Y.T. Li, Z.M. Sheng, L.M. Chen, W.M. Wang, J.L. Ma, X. Lu, Z.Y. Wei, J.E. Chen, J. Zhang, Sci. China-Phys. Mech. Astron. 56, 457 (2013)

    Article  ADS  Google Scholar 

  46. M. Tayyab, S. Bagchi, B. Ramakrishna, T. Mandal, A. Upadhyay, R. Ramis, J.A. Chakera, P.A. Naik, P.D. Gupta, Phys. Rev. E 90, 023103 (2014)

    Article  ADS  Google Scholar 

  47. T. Esirkepov, M. Yamagiwa, T. Tajima, Phys. Rev. Lett. 96, 105001 (2006)

    Article  ADS  Google Scholar 

  48. H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012)

    Article  ADS  Google Scholar 

  49. S. Sinigardi, J. Babaei, G. Turchetti, Nucl. Instrum. Methods Phys. Res. A 909, 438 (2018)

    Article  ADS  Google Scholar 

  50. L. Fedeli, A. Formenti, A. Pazzaglia, F.M. Arioli, A. Tentori, M. Passoni, New J. Phys. 22, 033045 (2020)

    Article  ADS  Google Scholar 

  51. D. Jung, B.J. Albright, L. Yin, D.C. Gautier, R. Shah, S. Palaniyappan, S. Letzring, B. Dromey, H.-C. Wu, T. Shimada, R.P. Johnson, M. Roth, J.C. Fernandez, D. Habs, B.M. Hegelich, New J. Phys. 15, 123035 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank M. Kumar for valuable comments and for the manuscript editing. Additionally, the authors express our gratitude to Sarah North for proofreading. The EPOCH simulation studies of this work was in part funded by the UKEPSRC grants EP/G054950/1, EP/G056803/1, EP/G055165/1 EP/M018156/1, and EP/ M022-463/1.

Author information

Authors and Affiliations

Authors

Contributions

M.T. conceived of the presented idea, performed the computations, prepared figures and wrote the manuscript with support from O.C. O.C. reviewed the manuscript and contributed to results interpretations. D.B.D. reviewed the manuscript.

Corresponding author

Correspondence to M. Turki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turki, M., Culfa, O. & Bennaceur-Doumaz, D. Enhancing laser-driven proton acceleration using a lithium target. Appl. Phys. B 129, 191 (2023). https://doi.org/10.1007/s00340-023-08136-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08136-2

Navigation