Skip to main content
Log in

Analysis of crosstalk in spectral beam-combining systems based on oscillation modes

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The output spectra and combining efficiency of the spectral beam-combining (SBC) system are significantly affected by the crosstalk effect. An in-depth understanding of the oscillation modes of the diode lasers (DLs) and the crosstalk effect can enhance the SBC system. It is the first time that the relationship between locked spectral modes of the DLs and the crosstalk is built up. By dividing the crosstalk into self-crosstalk and mutual-crosstalk, the influence of crosstalk on the combining efficiency of the SBC system is analyzed based on the Lang–Kobayashi rate equations. Results indicate that the influence of self-crosstalk on the combining efficiency is weaker than that of the mutual-crosstalk. When the crosstalk factor is 0.2, the combining efficiency is only reduced by about 1.7% due to self-crosstalk, while the reduction in efficiency caused by mutual-crosstalk is up to 30%. In addition, for mutual-crosstalk, first-order crosstalk has a greater impact on efficiency than high-order crosstalk. The fourth-order crosstalk causes only a 3% decline in combining efficiency, while the first-order crosstalk results in a decrease of about 27%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Iwaya, S. Tanaka, T. Omori, K. Yamada, R. Hasegawa, M. Shimokawa, A. Yabutani, S. Iwayama, K. Sato, T. Takeuchi, S. Kamiyama, H. Miyake, Recent development of UV-B laser diodes. Jpn. J. Appl. Phys. 61(4), 040501 (2022). https://doi.org/10.3584/1347-4065/ac3be8

    Article  ADS  Google Scholar 

  2. B. Niu, X. Shi, K. Ge, J. Ruan, Z. Xu, S. Zhang, D. Guo, T. Zhai, An all-optical tunable polymer WGM laser pumped by a laser diode. Nanoscale Adv. 4(9), 2153–2158 (2022). https://doi.org/10.1039/D2NA00025C

    Article  ADS  Google Scholar 

  3. C. C. Cook, T. Y. Fan, Spectral beam combining of Yb-doped fiber lasers in an external cavity. In Advanced Solid State Lasers. Optica Publishing Group. PD5 (1999). https://doi.org/10.1364/ASSL.1999.PD5

  4. Z. Wu, Z. Zhong, L. Yang, B. Zhang, Beam properties in a spectral beam combining system based on trapezoidal multilayer dielectric gratings. JOSA B. 33(2), 171–179 (2016). https://doi.org/10.1364/JOSAB.33.000171

    Article  ADS  Google Scholar 

  5. R. Lang, K. Kobayashi, External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16(3), 347–355 (1980). https://doi.org/10.1109/JQE.1980.1070479

    Article  ADS  Google Scholar 

  6. L. Yang, Z. Wu, Z. Zhong, B. Zhang, Effect of crosstalk on combined beam characteristics in spectral beam combining systems. Opt. Commun. 384, 30–35 (2017). https://doi.org/10.1016/j.optcom.2016.09.060

    Article  ADS  Google Scholar 

  7. E.J. Bochove, Theory of spectral beam combining of fiber lasers. IEEE J. Quantum Electron. 38(5), 432–445 (2002). https://doi.org/10.1109/3.998614

    Article  ADS  Google Scholar 

  8. Z. Wu, L. Yang, Z. Zhong, B. Zhang, Influence of laser array performance on spectrally combined beam. J. Mod. Opt. 63(19), 1972–1980 (2016). https://doi.org/10.1080/09500340.2016.1183056

    Article  ADS  Google Scholar 

  9. A.K. Goyal, A. Sanchez, G.W. Turner, T.Y. Fan, Z.L. Liau, M.J. Manfra, P.J. Foti, L. Missaggia, P. O’Brien, J.L. Daneu, Wavelength beam combining of mid-IR semiconductor lasers. IEEE Lasers Electro-Opt. Soc. 2, 532–533 (2001). https://doi.org/10.1109/LEOS.2001.968924

    Article  Google Scholar 

  10. H. Meng, T. Sun, H. Tan, J. Yu, W. Du, F. Tian, J. Li, S. Gao, X. Wang, D. Wu, High-brightness spectral beam combining of diode laser array stack in an external cavity. Opt. Express 23(17), 21819–21824 (2015). https://doi.org/10.1364/OE.23.021819

    Article  ADS  Google Scholar 

  11. A. Sevian, O. Andrusyak, I. Ciapurin, G. Venus, L. Glebov, Spectral beam combining with volume Bragg gratings: cross-talk analysis and optimization schemes. SPIE. 6216, 243–254 (2006). https://doi.org/10.1117/12.666024

    Article  ADS  Google Scholar 

  12. W. Zhang, P. Cao, F. Ting, X. Zhou, W. Zheng, High-efficiency spectral beam combining of an individual laser diode bar with polarization multiplexing. Opt. Lett. 48(4), 1080–1083 (2023). https://doi.org/10.1364/OL.483315

    Article  ADS  Google Scholar 

  13. Z. Zhu, W. Wu, L. Wang, Y. Hui, H. Lei, Q. Li, Dual-wavelength laser source by spectral beam combining of two Nd: YAG pulse lasers. Appl. Opt. 62(8), 1939–1942 (2023). https://doi.org/10.1364/AO.481107

    Article  ADS  Google Scholar 

  14. X. Fan, J. Zhang, S. Li, S. Li, Y. Wang, F. Du, X. Huang, Y. Li, L. Zhang, C. Wang, A method to achieve spectral beam combining based on a novel symmetric grating. Front. Phys. 10, 1280 (2022). https://doi.org/10.3389/fphy.2022.1102323

    Article  Google Scholar 

  15. J. Zhang, H. Peng, J. Zhang, J. Wang, J. Han, Y. Lei, L. Qin, L. Wang, Spectral beam combining of diode lasers extended into the non-SBC direction. Opt. Express. 30(19), 33733–33738 (2022). https://doi.org/10.1364/OE.468586

    Article  ADS  Google Scholar 

  16. H. Gong, Z. Liu, Y. Zhou, W. Zhang, T. Lv, Mode-hopping suppression of external cavity diode laser by mode matching. Appl. Opt. 53(4), 694–701 (2014). https://doi.org/10.1364/AO.53.000694

    Article  ADS  Google Scholar 

  17. G.Y. Yan, A.L. Schawlow, Measurement of diode laser characteristics affecting tunability with an external grating. JOSA B. 9(11), 2122–2127 (1992). https://doi.org/10.1364/JOSAB.9.002122

    Article  ADS  Google Scholar 

  18. Y. Xiao, F. Brunet, M. Kanskar, M. Faucher, A. Wetter, N. Holehouse, 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks. Opt. Express 20(3), 3296–3301 (2012). https://doi.org/10.1364/OE.20.003296

    Article  ADS  Google Scholar 

  19. D. Chen, Z. Fang, H. Cai, J. Geng, R. Qu, Instabilities in a grating feedback external cavity semiconductor laser. Opt. Express 16(21), 17014–17020 (2008). https://doi.org/10.1364/OE.16.017014

    Article  ADS  Google Scholar 

  20. Q. Zhang, Z. Wu, W. Cai, Y. Zhuang, Y. She, Spectral-combined beam characteristics based on external cavity feedback diode laser array. Opt. Eng. 62(5), 056101–056101 (2023). https://doi.org/10.1117/1.OE.62.5.056101

    Article  ADS  Google Scholar 

  21. D. Ott, S.N.S. Reihani, L.B. Oddershede, Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering. Rev. Sci. Instrum. 85(5), 053108 (2014). https://doi.org/10.1063/1.4878261

    Article  ADS  Google Scholar 

  22. F.A. Memon, F. Morichetti, Z.A. Arain, U.A. Korai, A. Melloni, Semiconductor laser in distributed optical feedback regime. Wireless Pers. Commun. 106, 2149–2161 (2019). https://doi.org/10.1007/s11277-018-5931-y

    Article  Google Scholar 

  23. G. Haiping, W. Chenhao, W. Fei, Z. Lijing, X. Chengwen, Study on the dynamic mode stability of grating-feedback external cavity diode lasers. Laser Phys. 26(4), 045002 (2016). https://doi.org/10.1088/1054-660X/26/4/045002

    Article  Google Scholar 

  24. C.E. Hamilton, S.C. Tidwell, D. Meekhof, J. Seamans, N. Gitkind, D.D. Lowenthal, High-power laser source with spectrally beam-combined diode laser bars. SPIE High-Power Diode Laser Technol. Appl. II(5336), 1–10 (2004). https://doi.org/10.1117/12.531595

    Article  ADS  Google Scholar 

  25. Y. Song, X. Yu, C. Hu, P. Wang, H. Ma, X. Tang, Analysis of crosstalk in spectral beam combining of diode laser bar. Appl. Opt. 61(12), 3390–3399 (2022). https://doi.org/10.1364/AO.456640

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research is sponsored by Department of Science and Technology of Sichuan Province [2021ZYD0036], National Natural Science Foundation of China [61905203].

Author information

Authors and Affiliations

Authors

Contributions

Zhen Wu wrote the full text of the article. Wei Cai calculated and drew the Fig. 3 to 12. Chengshuang Yang, Qingsong Zhang and Zairu Ma checked and revised the article. Yinghao Zhuang draw the Fig. 1 and 2, and check the theoretical equations.

Corresponding author

Correspondence to Zhen Wu.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Cai, W., Feng, P. et al. Analysis of crosstalk in spectral beam-combining systems based on oscillation modes. Appl. Phys. B 129, 124 (2023). https://doi.org/10.1007/s00340-023-08069-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08069-w

Navigation