Skip to main content
Log in

Ground-state decoherence of lithium atoms by diatomic polar molecules and noble-gas atoms

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the ground-state coherence of Li atoms in the vapor of the diatomic polar molecules, LiCl, and in the noble gases, Ne, Ar, and Xe. The decay of spin precession provides insight into the magnetic sublevel decoherence due to spin-rotation and spin-exchange interactions. These interactions are identified by the temperature dependence of sublevel decoherence and evaluated in Ne, Ar, and Xe gases, respectively. The linewidth of coherent population trapping is attributed to a combination of magnetic sublevel and hyperfine-level decoherences. Subtracting the sublevel decoherence, the hyperfine decoherence, indicated by the Carver rate, is obtained in Xe gas. In Ne and Ar gases, the hyperfine decoherence is found to be negligible. When LiCl vapor is added to the noble gases, the polar LiCl molecules broaden both the sublevel and hyperfine resonances of the Li atoms. This broadening is not due to the Carver rate but to spin-rotation interactions with the dilute molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Ishikawa, Noble-gas atoms characterized by hyperfine frequency shift of lithium atom. J. Chem. Phys. 156(14), 144301 (2022)

    Article  ADS  Google Scholar 

  2. K. Ishikawa, Pseudopotential analysis on hyperfine splitting frequency shift of alkali-metal atoms in noble gases, revisited. J. Chem. Phys. 158(8), 084306 (2023)

    Article  ADS  Google Scholar 

  3. J.J. Wright, L.C. Balling, R.H. Lambert, Hyperfine Splittings and Pressure Shifts of \({{\rm Li}}^{6}\) and \({{\rm Li}}^{7}\). Phys. Rev. 183, 180–185 (1969)

  4. K. Ishikawa, Spin-polarized lithium diffusion in a glass hot-vapor cell. Appl. Phys. B 122(8), 224 (2016)

    Article  ADS  Google Scholar 

  5. K. Ishikawa, M. Inoue, M. Yamamoto, Emission detection of dark resonance in a dilute lithium atomic vapor. J. Opt. Soc. Am. B 39(9), 2300–2305 (2022)

    Article  Google Scholar 

  6. W. Zhen, Wall interactions of spin-polarized atoms. Rev. Mod. Phys. 93, 035006 (2021)

    Article  Google Scholar 

  7. K. Ishikawa, B. Patton, Y.Y. Jau, W. Happer, Spin Transfer from an Optically Pumped Alkali Vapor to a Solid. Phys. Rev. Lett. 98(18), 183004 (2007)

    Article  ADS  Google Scholar 

  8. K. Ishikawa, B. Patton, B.A. Olsen, Y.-Y. Jau, W. Happer, Transfer of spin angular momentum from Cs vapor to nearby Cs salts through laser-induced spin currents. Phys. Rev. A 83(6), 063410 (2011)

    Article  ADS  Google Scholar 

  9. K. Ishikawa, Hyperpolarized cesium ions doped in a glass material. J. Magn. Reson. 249, 94–99 (2014)

    Article  ADS  Google Scholar 

  10. M.J. Weber, Temperature Dependence of Spin-Lattice Relaxation in Alkali Halides. Phys. Rev. 130, 1–10 (1963)

    Article  ADS  Google Scholar 

  11. T.G. Stoebe, R.A. Huggins, Measurement of ionic diffusion in lithium fluoride by nuclear magnetic resonance techniques. J. Materials Science 1(2), 117–126 (1966)

    Article  ADS  Google Scholar 

  12. D.L. Hildenbrand, W.F. Hall, F. Ju, N.D. Potter, Vapor Pressures and Vapor Thermodynamic Properties of Some Lithium and Magnesium Halides. J. Chem. Phys. 40(10), 2882–2890 (1964)

    Article  ADS  Google Scholar 

  13. W. Happer, Y.-Y. Jau, T.G. Walker, Optically Pumped Atoms (Wiley-VCH, Weinheim, 2010)

    Book  Google Scholar 

  14. C.W. Beer, R.A. Bernheim, Hyperfine pressure shift of \(^{133}{{\rm Cs}} \) atoms in noble and molecular buffer gases. Phys. Rev. A 13, 1052–1057 (1976)

    Article  ADS  Google Scholar 

  15. D. Budker, M. Romalis, Optical magnetometry. Nat. Phys. 3(4), 227–234 (2007)

    Article  Google Scholar 

  16. O. Katz, O. Peleg, O. Firstenberg, Coherent Coupling of Alkali Atoms by Random Collisions. Phys. Rev. Lett. 115, 113003 (2015)

    Article  ADS  Google Scholar 

  17. K. Ishikawa, Pressure effect on hyperfine CPT resonance of ground-state Li atoms in glass hot-vapor cell. Appl. Phys. B 125(6), 112 (2019)

    Article  ADS  Google Scholar 

  18. J.C. Camparo, Semiempirical theory of Carver rates in alkali/noble-gas systems. J. Chem. Phys. 126(24), 244310 (2007)

    Article  ADS  Google Scholar 

  19. B.H. McGuyer, Hyperfine-frequency shifts of alkali-metal atoms during long-range collisions. Phys. Rev. A 87, 054702 (2013)

    Article  ADS  Google Scholar 

  20. P.J. Oreto, Y.-Y. Jau, A.B. Post, N.N. Kuzma, W. Happer, Buffer-gas-induced shift and broadening of hyperfine resonances in alkali-metal vapors. Phys. Rev. A 69, 042716 (2004)

    Article  ADS  Google Scholar 

  21. Y. Kurosaki, K. Yokoyama, Ab initio MRSDCI study on the low-lying electronic states of the lithium chloride molecule (LiCl). J. Chem. Phys. 137(6), 064305 (2012)

    Article  ADS  Google Scholar 

  22. P.C. Gibbons, N.F. Ramsey, Electric Field Dependence of the Atomic-Hydrogen Hyperfine Separation. Phys. Rev. A 5, 73–78 (1972)

    Article  ADS  Google Scholar 

  23. M. Arditi, T.R. Carver, Pressure, Light, and Temperature Shifts in Optical Detection of 0–0 Hyperfine Resonance of Alkali Metals. Phys. Rev. 124(3), 800–809 (1961)

    Article  ADS  Google Scholar 

  24. A.N. Nesmeyanov, Vapor pressure of the chemical elements (North-Holland, Amsterdam, 1963)

    Google Scholar 

  25. Z. Wu, M. Kitano, W. Happer, M. Hou, J. Daniels, Optical determination of alkali metal vapor number density using Faraday rotation. Appl. Opt. 25(23), 4483–4492 (1986)

    Article  ADS  Google Scholar 

  26. A. Gallagher, Noble-gas broadening of the \({{\rm Li}} \) resonance line. Phys. Rev. A 12, 133–138 (1975)

    Article  ADS  Google Scholar 

  27. C.J. Sansonetti, C.E. Simien, J.D. Gillaspy, J.N. Tan, S.M. Brewer, R.C. Brown, S. Wu, J.V. Porto, Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the \(^{6,7}{{\rm Li}}\)\({D}\) Lines. Phys. Rev. Lett. 107, 023001 (2011)

    Article  ADS  Google Scholar 

  28. S. Li, P. Vachaspati, D. Sheng, N. Dural, M.V. Romalis, Optical rotation in excess of 100 rad generated by Rb vapor in a multipass cell. Phys. Rev. A 84, 061403 (2011)

    Article  ADS  Google Scholar 

  29. J. Vanier, C. Audoin, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, Bristol, 1989)

    Book  Google Scholar 

  30. S. Appelt, A. Ben-Amar Baranga, C. J. Erickson, M.V. Romalis, A.R. Young, W. Happer, Theory of spin-exchange optical pumping of \({{\rm He}}^{3} \) and \({{\rm Xe}}^{129}\). Phys. Rev. A, 58:1412–1439 (1998)

  31. Yuan-Yu Jau, New studies of optical pumping, spin resonances, and spin exchange in mixtures of inert gases and alkali-metal vapors. PhD thesis, Princeton University (2005)

  32. R.A. Bernheim, Spin Relaxation in Optical Pumping. J. Chem. Phys. 36(1), 135–140 (1962)

    Article  ADS  Google Scholar 

  33. T.G. Walker, W. Happer, Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 69, 629–642 (1997)

    Article  ADS  Google Scholar 

  34. W. Happer, H. Tang, Spin-Exchange Shift and Narrowing of Magnetic Resonance Lines in Optically Pumped Alkali Vapors. Phys. Rev. Lett. 31, 273–276 (1973)

    Article  ADS  Google Scholar 

  35. S. Appelt, A. Ben-Amar Baranga, A.R. Young, W. Happer, Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells. Phys. Rev. A, 59:2078–2084 (1999)

  36. K. Ishikawa, T. Yabuzaki, Diffusion coefficient and sublevel coherence of Rb atoms in \({{\rm N }}_{2}\) buffer gas. Phys. Rev. A 62, 065401 (2000)

    Article  ADS  Google Scholar 

  37. K. Ishikawa, T. Kojima, T. Hasegawa, Y. Takagi, Spin dynamics of dense alkali-metal atoms. Phys. Rev. A 65, 032511 (2002)

    Article  ADS  Google Scholar 

  38. F.A. Franz, E. Lüscher, Spin Relaxation of Optically Pumped Cesium. Phys. Rev. 135, A582–A588 (1964)

    Article  ADS  Google Scholar 

  39. A. Pouliot, G. Carlse, H.C. Beica, T. Vacheresse, A. Kumarakrishnan, U. Shim, S.B. Cahn, A. Turlapov, T. Sleator, Accurate determination of an alkali-vapor-inert-gas diffusion coefficient using coherent transient emission from a density grating. Phys. Rev. A 103, 023112 (2021)

    Article  ADS  Google Scholar 

  40. Jacques Vanier, Jean-F. Simard, Jean-S, Boulanger. Relaxation and frequency shifts in the ground state of \({{\rm Rb}}^{85}\). Phys. Rev. A, 9:1031–1040 (1974)

  41. T. Lindvall, M. Merimaa, I. Tittonen, E. Ikonen, All-Optical Atomic Clock Based on Dark States of\(^{85}\)Rb, pages 183–190. World Scientific, (2002)

  42. K. Ishikawa, Noble-gas performance for lithium atomic spectroscopy in glass vapor cells. Appl. Phys. B 128(1), 7 (2022)

    Article  ADS  Google Scholar 

  43. Taesul Lee, T.P. Das, R.M. Sternheimer, Perturbation theory for the Stark effect in the hyperfine structure of alkali-metal atoms. Phys. Rev. A, 11:1784–1786 (1975)

  44. A. Godone, D. Calonico, F. Levi, S. Micalizio, C. Calosso, Stark-shift measurement of the \(^{2}S_{1/2}\), \(F=3 \rightarrow F=4\) hyperfine transition of \(^{133}{{\rm Cs}} \). Phys. Rev. A 71, 063401 (2005)

    Article  ADS  Google Scholar 

  45. Ronald R. Herm. Reactive Scattering of Alkali Atoms and Alkali Halides at Thermal Energies. In P. Davidovits and D.L. McFadden, editors, Alkali Halide Vapors, pages 189–253. Academic Press (1979)

  46. R.V. Krems, A. Dalgarno, Quantum-mechanical theory of atom-molecule and molecular collisions in a magnetic field: Spin depolarization. J. Chem. Phys. 120(5), 2296–2307 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was partially funded by JSPS (Grant number 23H01845).

Author information

Authors and Affiliations

Authors

Contributions

KI prepared the main manuscript text and figures. MY and KI measured and analyzed the signals

Corresponding author

Correspondence to Kiyoshi Ishikawa.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, K., Yamamoto, M. Ground-state decoherence of lithium atoms by diatomic polar molecules and noble-gas atoms. Appl. Phys. B 129, 113 (2023). https://doi.org/10.1007/s00340-023-08059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08059-y

Navigation