Skip to main content
Log in

Spatiotemporally resolved spectra of gaseous discharge between electrodes triggered by femtosecond laser filamentation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Atmospheric pressure discharge plasma is widely utilized in industry and science. However, due to the spatiotemporal uncertainty of the natural discharge, it is difficult to measure the discharge plasma spectra with a high spatiotemporal resolution. This prevents the accurate investigation of discharge plasma evolution and limits further applications. Here, we harnessed a femtosecond laser filament to trigger and guide a high-voltage discharge, i.e., the discharge plasma channel is rigorously controlled by the filament in both space and time. Therefore, the spectra of the plasma channel with a high spatiotemporal resolution could be measured using an imaging spectrometer. The spectra of the whole process of femtosecond laser filament-triggered discharge plasma are thoroughly studied. According to the spectral emission features, the whole process is divided into three stages: femtosecond laser filamentation, streamer propagation, and discharge. The spectral emissions at different stages can be utilized as required according to the spectral emission features. Based on the spatiotemporally resolved spectra of the streamer, the streamer propagation velocity is calculated to be about 3 × 105 m/s. In addition, atomic emissions from a discharge plasma triggered by femtosecond laser filament can be used for one-dimensional component measurements of flow fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I.N. Kosarev, A.I. Pakhomov, S.V. Kindysheva, E.M. Anokhin, N.L. Aleksandrov, Nanosecond discharge ignition in acetylene-containing mixtures. Plasma Sources Sci. Technol. 22(4), 045018 (2013)

    Article  ADS  Google Scholar 

  2. L. Fei, B. Zhao, X. Liu, L. He, J. Deng, J. Lei, Z. Zhao, Z. Zhao, Application study on plasma ignition in aeroengine strut–cavity–injector integrated afterburner. Plasma Sci. Technol. 23(10), 105504 (2021)

    Article  ADS  Google Scholar 

  3. A. Kuwabara, S.-I. Kuroda, H. Kubota, Preparation of a CVD thin film by an atmospheric pressure low temperature surface discharge plasma torch. Plasma Sources Sci. Technol. 15(3), 328–331 (2006)

    Article  ADS  Google Scholar 

  4. T. Shao, R. Wang, C. Zhang, P. Yan, Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications. High Volt. 3(1), 14–20 (2018)

    Article  Google Scholar 

  5. K. Yoshida, B.S. Rajanikanth, M. Okubo, NOx reduction and desorption studies under electric discharge plasma using a simulated gas mixture: a case study on the effect of corona electrodes. Plasma Sci. Technol. 11(3), 327–333 (2009)

    Article  ADS  Google Scholar 

  6. L. Guo, R. Xu, D. Liu, Y. Qi, Y. Guo, W. Wang, J. Zhang, Z. Liu, M.G. Kong, Eradication of methicillin-resistant Staphylococcus aureus biofilms by surface discharge plasmas with various working gases. J. Phys. D: Appl. Phys. 52(42), 425202 (2019)

    Article  ADS  Google Scholar 

  7. P.J. Bruggeman, F. Iza, R. Brandenburg, Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sour. Sci. Technol. 26(12), 123002 (2017)

    Article  ADS  Google Scholar 

  8. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: a review. Spectroc. Acta Pt. B-Atom. Spectr. 61(1), 2–30 (2006)

    Article  ADS  Google Scholar 

  9. A. Larsson, Gas-discharge closing switches and their time jitter. IEEE Trans. Plasma Sci. 40(10), 2431–2442 (2012)

    Article  ADS  Google Scholar 

  10. S. Nijdam, J. Teunissen, U. Ebert, The physics of streamer discharge phenomena. Plasma Sources Sci. Technol. 29(10), 103001 (2020)

    Article  ADS  Google Scholar 

  11. J.R. Dwyer, M.A. Uman, The physics of lightning. Phys. Rep. 534(4), 147–241 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. L. Chen, H. Fan, R. Cao, W. Yang, Y. Li, Study on the breakdown characteristics of the trigatron spark gap triggered by plasma jet. AIP Adv. 10(1), 015002 (2020)

    Article  ADS  Google Scholar 

  13. A.V. Meshchanov, D.O. Ivanov, Y.Z. Ionikh, A.I. Shishpanov, Triggering of the breakdown in a discharge tube by visible-spectrum light pulses. J. Phys. D: Appl. Phys. 51(33), 335202 (2018)

    Article  Google Scholar 

  14. Y. Kashiwagi, H. Itoh, Synchronization of positive surface streamers triggered by vacuum ultraviolet in atmosphere. J. Phys. D: Appl. Phys. 39(1), 113–118 (2005)

    Article  ADS  Google Scholar 

  15. M. Miki, Y. Aihara, T. Shindo, Development of long gap discharges guided by a pulsed CO2 laser. J. Phys. D: Appl. Phys. 26(8), 1244–1252 (1993)

    Article  ADS  Google Scholar 

  16. Q. Wang, W. Wei, X. Li, Z. Yang, J. Wu, Experimental study of the laser-triggered discharge for the application in a gap switch. IEEE Trans. Compon. Pack. Manuf. 5(4), 460–464 (2015)

    Article  Google Scholar 

  17. H. Pépin, D. Comtois, F. Vidal, C.Y. Chien, A. Desparois, T.W. Johnston, J.C. Kieffer, B. La Fontaine, F. Martin, F.A.M. Rizk, C. Potvin, P. Couture, H.P. Mercure, A. Bondiou-Clergerie, P. Lalande, I. Gallimberti, Triggering and guiding high-voltage large-scale leader discharges with sub-joule ultrashort laser pulses. Phys. Plasmas 8(5), 2532–2539 (2001)

    Article  ADS  Google Scholar 

  18. Y. Brelet, A. Houard, L. Arantchouk, B. Forestier, Y. Liu, B. Prade, J. Carbonnel, Y.-B. André, A. Mysyrowicz, Tesla coil discharges guided by femtosecond laser filaments in air. Appl. Phys. Lett. 100(18), 181112 (2012)

    Article  ADS  Google Scholar 

  19. L. Arantchouk, B. Honnorat, E. Thouin, G. Point, A. Mysyrowicz, A. Houard, Prolongation of the lifetime of guided discharges triggered in atmospheric air by femtosecond laser filaments up to 130 μs. Appl. Phys. Lett. 108(17), 173501 (2016)

    Article  ADS  Google Scholar 

  20. A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441(2), 47–189 (2007)

    Article  ADS  Google Scholar 

  21. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.P. Wolf, Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70(10), 1633–1713 (2007)

    Article  ADS  Google Scholar 

  22. J. Papeer, I. Dey, M. Botton, Z. Henis, A. Lad, M. Shaikh, D. Sarkar, K. Jana, S. Tata, S. Roy, Y. Ved, G.R. Kumar, A. Zigler, Towards remote lightning manipulation by meters-long plasma channels generated by ultra-short-pulse high-intensity lasers. Sci Rep 9, 407 (2019)

    Article  ADS  Google Scholar 

  23. O.G. Kosareva, D.V. Mokrousova, N.A. Panov, I.A. Nikolaeva, D.E. Shipilo, E.V. Mitina, A.V. Koribut, G.E. Rizaev, A. Couairon, A. Houard, A.B. Savel’ev, L.V. Seleznev, A.A. Ionin, S.L. Chin, Remote triggering of air-gap discharge by a femtosecond laser filament and postfilament at distances up to 80 m. Appl. Phys. Lett. 119(4), 041103 (2021)

    Article  ADS  Google Scholar 

  24. F. Théberge, J.-F. Daigle, J.-C. Kieffer, F. Vidal, M. Châteauneuf, Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments. Sci Rep 7, 40063 (2017)

    Article  ADS  Google Scholar 

  25. B.M. Luther, L. Furfaro, A. Klix, J.J. Rocca, Femtosecond laser triggering of a sub-100 picosecond jitter high-voltage spark gap. Appl. Phys. Lett. 79(20), 3248–3250 (2001)

    Article  ADS  Google Scholar 

  26. L. Arantchouk, A. Houard, Y. Brelet, J. Carbonnel, J. Larour, Y.B. André, A. Mysyrowicz, A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation. Appl. Phys. Lett. 102(16), 163502 (2013)

    Article  ADS  Google Scholar 

  27. F. Théberge, J.-F. Gravel, J.-C. Kieffer, F. Vidal, M. Châteauneuf, Broadband and long lifetime plasma-antenna in air initiated by laser-guided discharge. Appl. Phys. Lett. 111(7), 073501 (2017)

    Article  ADS  Google Scholar 

  28. Y. Brelet, A. Houard, G. Point, B. Prade, L. Arantchouk, J. Carbonnel, Y.-B. André, M. Pellet, A. Mysyrowicz, Radiofrequency plasma antenna generated by femtosecond laser filaments in air. Appl. Phys. Lett. 101(26), 264106 (2012)

    Article  ADS  Google Scholar 

  29. T. Produit, P. Walch, C. Herkommer, A. Mostajabi, M. Moret, U. Andral, A. Sunjerga, M. Azadifar, Y.-B. André, B. Mahieu, W. Haas, B. Esmiller, G. Fournier, P. Krötz, T. Metzger, K. Michel, A. Mysyrowicz, M. Rubinstein, F. Rachidi, J. Kasparian, J.-P. Wolf, A. Houard, The laser lightning rod project★. Eur. Phys. J. Appl. Phys. 93(1), 10504 (2021)

    Article  ADS  Google Scholar 

  30. G.J.H. Brussaard, J. Hendriks, Photoconductive switching of a high-voltage spark gap. Appl. Phys. Lett. 86(8), 081503 (2005)

    Article  ADS  Google Scholar 

  31. J. Hendriks, B.H.P. Broks, J.J.A.M. van der Mullen, G.J.H. Brussaard, Experimental investigation of an atmospheric photoconductively switched high-voltage spark gap. J. Appl. Phys. 98(4), 043309 (2005)

    Article  ADS  Google Scholar 

  32. B.L. Fontaine, F. Vidal, D. Comtois, C. Ching-Yuan, A. Desparois, T.W. Johnston, J. Kieffer, H.P. Mercure, H. Pepin, F.A.M. Rizk, The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses. IEEE Trans. Plasma Sci. 27(3), 688–700 (1999)

    Article  ADS  Google Scholar 

  33. D. Comtois, C.Y. Chien, A. Desparois, F. Génin, G. Jarry, T.W. Johnston, J.C. Kieffer, B. La Fontaine, F. Martin, R. Mawassi, H. Pépin, F.A.M. Rizk, F. Vidal, P. Couture, H.P. Mercure, C. Potvin, A. Bondiou-Clergerie, I. Gallimberti, Triggering and guiding leader discharges using a plasma channel created by an ultrashort laser pulse. Appl. Phys. Lett. 76(7), 819–821 (2000)

    Article  ADS  Google Scholar 

  34. T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, K. Nemoto, Leader effects on femtosecond-laser-filament-triggered discharges. Phys. Plasmas 15(1), 013107 (2008)

    Article  ADS  Google Scholar 

  35. A. Schmitt-Sody, D. French, W. White, A. Lucero, W.P. Roach, V. Hasson, The importance of corona generation and leader formation during laser filament guided discharges in air. Appl. Phys. Lett. 106(12), 124101 (2015)

    Article  ADS  Google Scholar 

  36. A. Schmitt-Sody, J. Elle, A. Lucero, M. Domonkos, A. Ting, V. Hasson, Dependence of single-shot pulse durations on near-infrared filamentation-guided breakdown in air. AIP Adv. 7(3), 035018 (2017)

    Article  ADS  Google Scholar 

  37. M. Miki, A. Wada, Guiding of electrical discharges under atmospheric air by ultraviolet laser-produced plasma channel. J. Appl. Phys. 80(6), 3208–3214 (1996)

    Article  ADS  Google Scholar 

  38. K. Sugiyama, T. Fujii, M. Miki, A. Zhidkov, M. Yamaguchi, E. Hotta, K. Nemoto, Submicrosecond laser-filament-assisted corona bursts near a high-voltage electrode. Phys. Plasmas 17(4), 043108 (2010)

    Article  ADS  Google Scholar 

  39. E.W. Rosenthal, I. Larkin, A. Goffin, T. Produit, M.C. Schroeder, J.-P. Wolf, H.M. Milchberg, Dynamics of the femtosecond laser-triggered spark gap. Opt. Express 28(17), 24599–24613 (2020)

    Article  ADS  Google Scholar 

  40. S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, P. Mora, Femtosecond laser-guided electric discharge in air. Phys. Rev. E 64(5), 057401 (2001)

    Article  ADS  Google Scholar 

  41. P. Ding, M. Ruchkina, D. Del Cont-Bernard, A. Ehn, D.A. Lacoste, J. Bood, Temporal dynamics of femtosecond-TALIF of atomic hydrogen and oxygen in a nanosecond repetitively pulsed discharge-assisted methane–air flame. J. Phys. D: Appl. Phys. 54(27), 275201 (2021)

    Article  Google Scholar 

  42. D.D. Cont-Bernard, M. Ruchkina, P. Ding, J. Bood, A. Ehn, D.A. Lacoste, Femtosecond two-photon laser-induced fluorescence imaging of atomic hydrogen in a laminar methane–air flame assisted by nanosecond repetitively pulsed discharges. Plasma Sources Sci. Technol. 29(6), 065011 (2020)

    Article  ADS  Google Scholar 

  43. H. Kojima, K. Hotta, T. Kitamura, N. Hayakawa, A. Otake, K. Kobayashi, T. Kato, T. Rokunohe, H. Okubo, Classification of impulse breakdown mechanisms under non-uniform electric field in air. IEEE Trns. Dielectr. Electr. Insul. 23(1), 194–201 (2016)

    Article  Google Scholar 

  44. M. Seeger, T. Votteler, J. Ekeberg, S. Pancheshnyi, L. Sánchez, Streamer and leader breakdown in air at atmospheric pressure in strongly non-uniform fields in gaps less than one metre. IEEE Trns. Dielectr. Electr. Insul. 25(6), 2147–2156 (2018)

    Article  Google Scholar 

  45. G. Tamošauskas, L. Šaulys, A. Dubietis, A. Piskarskas, Small scale laser-triggered electrical discharges and their application to characterization of plasma channel induced by light filaments. Lith. J. Phys. 45(1), 37–42 (2005)

    Article  Google Scholar 

  46. L. Arantchouk, G. Point, Y. Brelet, B. Prade, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, Large scale Tesla coil guided discharges initiated by femtosecond laser filamentation in air. J. Appl. Phys. 116(1), 013303 (2014)

    Article  ADS  Google Scholar 

  47. L. Arantchouk, G. Point, Y. Brelet, J. Larour, J. Carbonnel, Y.B. André, A. Mysyrowicz, A. Houard, Compact 180-kV Marx generator triggered in atmospheric air by femtosecond laser filaments. Appl. Phys. Lett. 104(10), 103506 (2014)

    Article  ADS  Google Scholar 

  48. H. Xu, Y. Cheng, S.-L. Chin, H.-B. Sun, Femtosecond laser ionization and fragmentation of molecules for environmental sensing. Laser Photon. Rev. 9(3), 275–293 (2015)

    Article  ADS  Google Scholar 

  49. H.L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S.L. Chin, The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chem. Phys. 360(1), 171–175 (2009)

    Article  Google Scholar 

  50. Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S.L. Chin, R. Li, Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding. High Power Laser Sci. Eng. 4, e8 (2016)

    Article  Google Scholar 

  51. T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S.L. Chin, R. Li, Z. Xu, Direct observation of laser guided corona discharges. Sci Rep 5, 18681 (2015)

    Article  ADS  Google Scholar 

  52. P. Rambo, J. Schwarz, J.-C. Diels, High-voltage electrical discharges induced by an ultrashort-pulse UV laser system. J. Opt. A-Pure Appl. Opt. 3(2), 146–158 (2001)

    Article  ADS  Google Scholar 

  53. G. Point, L. Arantchouk, J. Carbonnel, A. Mysyrowicz, A. Houard, Plasma dynamics of a laser filamentation-guided spark. Phys. Plasmas 23(9), 093505 (2016)

    Article  ADS  Google Scholar 

  54. J. Bernhardt, W. Liu, F. Théberge, H.L. Xu, J.F. Daigle, M. Châteauneuf, J. Dubois, S.L. Chin, Spectroscopic analysis of femtosecond laser plasma filament in air. Opt. Commun. 281(5), 1268–1274 (2008)

    Article  ADS  Google Scholar 

  55. A. Sun, C. Huo, J. Zhuang, Formation mechanism of streamer discharges in liquids: a review. High Volt. 1(2), 74–80 (2016)

    Article  Google Scholar 

  56. M. Akhtar, A. Jabbar, N. Ahmed, S. Mahmood, Z.A. Umar, R. Ahmed, M.A. Baig, Analysis of lead and copper in soil samples by laser-induced breakdown spectroscopy under external magnetic field. Appl. Phys. B 125(6), 110 (2019)

    Article  ADS  Google Scholar 

  57. J. Kiefer, J.W. Tröger, Z.S. Li, M. Aldén, Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics. Appl. Phys. B 103(1), 229–236 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant numbers 52176169, 51806149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Zhu, Z., Li, B. et al. Spatiotemporally resolved spectra of gaseous discharge between electrodes triggered by femtosecond laser filamentation. Appl. Phys. B 128, 184 (2022). https://doi.org/10.1007/s00340-022-07907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07907-7

Navigation