Skip to main content
Log in

Measurement of 14CO2 using off-axis integrated cavity output spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

14C is one of the most important radioactive isotopes in the nuclear industry. Laser spectroscopy is being considered as a convenient and rapid method for 14CO2 analysis. Here, we demonstrate off-axis integrated cavity output spectroscopy (OA-ICOS) for monitoring 14CO2. The experiment is performed at the 14CO2 absorption line at 2203.657 cm−1 in the mid-infrared region to obtain sufficient sensitivity. In the experiment, a resonator that consists of two mirrors with a reflectance of 99.6% is used. The linearity of OA-ICOS is investigated using CO2 isotopologues’ signals. By applying the moving averaging filter, the interference noise is reduced, and the signal to noise ratio is improved by over 2.5 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Kutschera, Int. J. Mass Spectrom. 203, 349–350 (2013)

    Google Scholar 

  2. M.-M. Be, V. Chiste, C. Dulieu, X. Mougeot, V.P.Chechev, F.G. Kondev, A.L. Nichols, X. Huang, B. Wang, Monographie BIPM-5: Table of Radionuclides Vol. 7, (BIPM, 2013)

  3. Robert E. M. Hedges and John A. J. Gowlett, Sci. Am. 254(1), 100–107 (1986)

  4. W. Sohn, D.-W. Kang, W.-S. Kim, J. Nucl. Sci. Technol. 40, 604–613 (2003)

    Article  Google Scholar 

  5. X. Hou, JNFCWT, 16(1), 11–39 (2018) and references therein

  6. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi, Phy. Rev. Lett. 107, 270802 (2011)

    Article  Google Scholar 

  7. I. Galli, S. Bartalini, P. Cancio, P. De Natale, D. Mazzotti, G. Giusfredi, M.E. Fedi, P.A. Mando, Radiocarbon 55(2–3), 213–223 (2013)

    Article  Google Scholar 

  8. I. Galli, S. Bartalini, R. Ballerini, M. Barucci, P. Cancio, M. De Pas, G. Giusfredi, D. Mazzotti, N. Akikusa, P. De Natale, Optica 3, 385 (2016)

    Article  ADS  Google Scholar 

  9. S. Xu, G.T. Cook, A.J. Cresswell, E. Dunbar, S.P.H. Freeman, X. Hou, P. Jacobsson, H.R. Kinch, P. Naysmith, D.C.W. Sanderson, B.G. Tripney, Sci. Rep. 6, 36947 (2016)

    Article  ADS  Google Scholar 

  10. S-Ki. Chun, H.-J. Woo, S.-Y. Cho, N.-B. Kim, and J.-D. Lee, Anal. Sci.Tech., 12, 279–283 (1999)

  11. J. Lehmuskoski, H. Vasama, J. Hamalainen, J. Hokkinen, T. Karkela, K. Heiskanen, M. Reinikaninen, S. Rautio, M. Hirvela, G. Genoud, Anal. Chem. 93(48), 16096–16104 (2021)

    Article  Google Scholar 

  12. G. Genoud, M. Vainio, H. Phillips, J. Dean, M. Merimaa, Opt. Lett. 40(7), 1342–1345 (2015)

    Article  ADS  Google Scholar 

  13. J.H. Lee, C.H. Kim, J. Kang, S. Song, M.H. Yun, J.C. Kim, Radiocarbon 59(3), 973–984 (2017)

    Article  Google Scholar 

  14. V. Remeikis, E. Lagzdina, A. Garbaras, A. Gudelis, J. Garankin, R. Plukiene, L. Juodis, G. Duskesas, D. Lingis, V. Abdulajev, A. Plukis, PLoS ONE 13, e0191677 (2018)

    Article  Google Scholar 

  15. G. Genoud, J. Lehmuskoski, S. Bell, V. Palonen, M. Oinonen, M.-L. K.-Soivi, and M. Reinikainen, Anal. Chem. 91(19), 12315–12320 (2019)

  16. A.J. Fleisher, D.A. Long, Q. Liu, L. Gameson, J.T. Hodges, J. Phys. Chem. Lett. 8, 4550 (2017)

    Article  Google Scholar 

  17. V. Sonnenschein, R.R. Terabayashi, H. Tomita, S. Kato, N. Hayashi, S. Takeda, L. Jin, M. Yamanaka, N. Nishizawa, A. Sato, K. Yoshida, T. Iguchi, J. appl. Phys. 124, 033101 (2018)

    Article  ADS  Google Scholar 

  18. A.D. McCartt, T.J. Ognibene, G. Bench, K.W. Turteltaub, Anal. Chem. 88(17), 8714–8719 (2016)

    Article  Google Scholar 

  19. M. Fatima, T. Hausmaninger, T. Tomberg, J. Karhu, M. Vainio, T. Hieta, G. Genoud, Opt. Lett. 46(9), 2083–2086 (2021)

    Article  ADS  Google Scholar 

  20. E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. ST. Clair, E.N.Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, Appl. Phys. B 92, 467–474 (2008)

  21. Jane Hodgkinson and Ralph P. Tatam, Meas. Sci. Technol. 24, 012004(59pp) (2013)

  22. M. Wahlen, R.S. Eng, K.W. Nill, Appl. Opt 16, 2350–2352 (1997)

    Article  ADS  Google Scholar 

  23. D. Labrie, J. Reid, Appl. Phys. 24, 381 (1981)

    Article  ADS  Google Scholar 

  24. Iacopo Galli, Pablo Cancio Pastor, Gianfranco Di Lonardo, Luciano Fusina, Giovanni Giusfredi, Davide Mazzotti, Filippo Tamassia and Paolo De Natale, Molecular Physics 109(17-18) 2267-2272 (2011)

  25. I.E. Gordon et al., J. Quant. Spectrosc Radiat. Transf. 277, 107949 (2022)

    Article  Google Scholar 

  26. L. Lee, H. Park, T.-S. Kim, K.-H. Ko, D.-Y. Jeong, Nucl. Instrum. Meth. Phys. Res. A 678, 8–12 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the KAERI Institutional Program (Project No. 524430-22)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Hoon Ko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, KH., Kim, Y., Kim, TS. et al. Measurement of 14CO2 using off-axis integrated cavity output spectroscopy. Appl. Phys. B 128, 149 (2022). https://doi.org/10.1007/s00340-022-07864-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07864-1

Navigation