Skip to main content
Log in

Dynamic flat-topped laser beam shaping method using mixed region amplitude freedom algorithm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A dynamic beam shaping method is proposed for the generation of flat-top beams (FTBs) in the far field. Using the mixed-region amplitude freedom algorithm, this new method is used to design the required phase distribution encoded on a spatial light modulator for the generation of FTB profiles. The characteristics of these new beam shaping methods are used as beam parameters, such as the laser beam size, the beam intensity of square FTBs, and the root-mean-square error (RMSE). Using our proposed method, the theoretical performance of beam intensity shaping is improved to an RMSE < 0.02 with a minimum number of iterations of phase reconstruction. Using the phase hologram of dynamic beam shaping, theoretical and experimental comparisons of edge steepness and plateau uniformity were established for the square FTBs of variable beam sizes. It is shown that the dynamic beam shaping of FTBs can produce high intensity uniformity in the plateau region with steep edges, which makes it an effective tool, especially for laser machining applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Shealy, Proc. of SPIE 4770, 29–46 (2002)

    ADS  Google Scholar 

  2. F. Dickey, L. Weichman, R. Shagam, Proc. of SPIE 4065, 338–348 (2000)

    Article  ADS  Google Scholar 

  3. D. Shealy, J. Hoffnagle, Appl. Opt. 45, 5118–5131 (2006)

    Article  ADS  Google Scholar 

  4. B. Frieden, Appl. Opt. 4, 1400–1403 (1965)

    Article  ADS  Google Scholar 

  5. C. Ih, Appl. Opt. 11, 694–695 (1972)

    Article  ADS  Google Scholar 

  6. W. Simmons, G. Leppelmeier, B. Johnson, Appl. Opt. 13, 1629–1632 (1974)

    Article  ADS  Google Scholar 

  7. C. Han, Y. Ishii, K. Murata, Appl. Opt. 22, 3644–3647 (1983)

    Article  ADS  Google Scholar 

  8. M. Karim, A. Hanafi, F. Hussain, S. Mustafa, Z. Samberid, N. Zain, Opt. Lett. 10, 470–471 (1985)

    Article  ADS  Google Scholar 

  9. F. Dickey, B. O’Neil, Opt. Eng. 27, 999–1007 (1988)

    Article  Google Scholar 

  10. V. Kermene, A. Saviot, M. Vampouille, B. Colombeau, C. Froehly, T. Dohnalik, Opt. Lett. 17, 859–861 (1992)

    Article  ADS  Google Scholar 

  11. K. Nemoto, T. Fujii, N. Goto, T. Nayuki, Y. Kanai, Opt. Lett. 21, 168–170 (1996)

    Article  ADS  Google Scholar 

  12. K. Nemoto, T. Fujii, N. Goto, H. Takino, T. Kobayashi, N. Shibata, K. Yamamura, Y. Mori, Appl. Opt. 36, 551–557 (1997)

    Article  ADS  Google Scholar 

  13. J. Pu, H. Zhang, Appl. Opt. 37, 4200–4205 (1998)

    Article  ADS  Google Scholar 

  14. S. Zhang, G. Neil, M. Shinn, Opt. Express. 11, 1942–1948 (2003)

    Article  ADS  Google Scholar 

  15. D. Shealy, S. Chao: Proc. of SPIE 5525 (2004).

  16. R. Gerchberg, W.O. Saxton, Optik 35, 237–246 (1972)

    Google Scholar 

  17. F. Li, Z. Lu, H. Li, J. Liao, Proc. of SPIE 4095, 189–195 (2000)

    Article  ADS  Google Scholar 

  18. Y. Zhao, Y. Li, Q. Zhou, Proc. of SPIE 5175, 77–87 (2003)

    Article  ADS  Google Scholar 

  19. G. Račiukaitis, E. Stankevičius, P. Gečys, M. Gedvilas, C. Bischoff, E. Jäger, U. Umhofer, F. Völklein, J. Laser Micro/Nanoeng. 6, 37–43 (2011)

    Article  Google Scholar 

  20. D. Wang, X. Liu, H. Wang, J. Zhang, L. Wu, Proc. of SPIE 8759, 1–6 (2013)

    ADS  Google Scholar 

  21. M. Pasienski, B. DeMarco, Opt. Express. 16, 2176–2190 (2008)

    Article  ADS  Google Scholar 

  22. T. Harte, G. Bruce, J. Keeling, D. Cassettari, Opt. Express. 22, 26548–26558 (2014)

    Article  ADS  Google Scholar 

  23. H. Ma, Z. Liu, P. Zhou, X. Wang, Y. Ma, X. Xu, J. Opt. A Pure Appl. Opt. 12, 045704 (2010)

    Google Scholar 

  24. A. Hendriks, D. Naidoo, F. Roux, C. López-Mariscal, A. Forbes, Proc. of SPIE 8490, 1–8 (2012)

    ADS  Google Scholar 

  25. D. Wang, B. Jin, Y. Wang, P. Jia, D. Cai, Y. Gao, IEEE Photonics J. 8, 1–7 (2016)

    Google Scholar 

  26. J.M. Maxson, A.C. Bartnik, I.V. Bazarov, Appl. Phys. Lett. 105, 171109 (2014)

    Article  ADS  Google Scholar 

  27. J. Liang, R.N. Kohn Jr., M.F. Becker, D.J. Heinzen, Appl. Opt. 49, 1323–1330 (2010)

    Article  ADS  Google Scholar 

  28. H. Pang, W. Liu, A. Cao, Q. Deng, Opt. Commun. 433, 44–51 (2019)

    Article  ADS  Google Scholar 

  29. T. Häfner, J. Heberle, D. Holder, M. Schmidt, J. Laser Appl. 29, 022205 (2017)

    Article  ADS  Google Scholar 

  30. C. Chang, J. Xia, L. Yang, W. Lei, Z. Yang, J. Chen, Appl. Opt. 54, 6994–7001 (2015)

    Article  ADS  Google Scholar 

  31. A. Jesacher, C. Maurer, S. Schwaighofer, M. Bernet, M. Ritsch-Marte, Opt. Express. 16, 4479–4486 (2008)

    Article  ADS  Google Scholar 

  32. J. Shi, D. Wei, C. Hu, M. Chen, K. Liu, J. Luo, X. Zhang, Opt. Express. 29, 7084–7099 (2021)

    Article  ADS  Google Scholar 

  33. S. Bollanti, P. Di Lazzaro, D. Murra, E. Tefouet Kana, G. Felici: Appl. Phys. B Lasers Opt. 78, 195–198 (2004)

  34. EN ISO 13694 “Test Methods for Laser Beam Power (Energy) Density Distribution” (2000).

  35. S. Jacobsson, A. Lundgren, J. Johansson, Int. J. Infrared Millimeter Waves. 11, 1251–1261 (1990)

    Article  ADS  Google Scholar 

  36. Z. Zalevsky, D. Mendlovic, R.G. Dorsch, Opt. Lett. 21, 842–844 (1996)

    Article  ADS  Google Scholar 

  37. B. Kress, P. Meyrueis, Digital diffractive optics: An introduction to planer diffractive optics and related technology: John Wiley & Sons Ltd, England, (2000).

  38. S. Jacobsson, S. Hard, A. Bolle, Appl. Opt. 26, 2773–2781 (1987)

    Article  ADS  Google Scholar 

  39. C. Schulze, D. Flamm, M. Duparré, A. Forbes, Opt. Lett. 37, 4687–4689 (2012)

    Article  ADS  Google Scholar 

  40. C. Rosales-Guzmán, A. Forbes, How to shape light with spatial light modulators: Press of SPIE, USA, (2017).

  41. C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, K. Sugioka, Sci. Rep. 6, 1–9 (2016)

    Article  Google Scholar 

  42. H.T. Eyyuboğlu, Ç. Arpali, Y. Baykal, Opt. Express. 14, 4196–4207 (2006)

    Article  ADS  Google Scholar 

  43. P. Senthilkumaran, F. Wyrowski, H. Schimmel, Opt. Lasers Eng. 43, 43–56 (2005)

    Article  Google Scholar 

  44. S. Reichelt, N. Leister, J. Phys. Conf. Ser. 415, 1–10 (2013)

    Article  Google Scholar 

  45. H. Zhang, J. Xie, J. Liu, Y. Wang, Appl. Opt. 48, 5834–5841 (2009)

    Article  ADS  Google Scholar 

  46. B. Saleh, M. Teich, Fundamentals of Photonics, 2nd edn. (John Wiley & Sons Inc., New York, 2007)

    Google Scholar 

  47. J. Goodman, Introduction to Fourier Optics, 2nd ed.: McGraw-Hill Companies, New York. (1998)

  48. J.J. Yang, M.R. Wang, Opt. Eng. 42, 3106–3113 (2003)

    Article  ADS  Google Scholar 

  49. D.Y. Alsaka, Ç. Arpali, S.A. Arpali, Opt. Rev. 25, 625–637 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by Çankaya University and the Department of Laser and Optoelectronics Engineering at Nahrain University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Çağlar Arpali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaka, D.Y., Arpali, Ç., Arpali, S.A. et al. Dynamic flat-topped laser beam shaping method using mixed region amplitude freedom algorithm. Appl. Phys. B 128, 137 (2022). https://doi.org/10.1007/s00340-022-07860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07860-5

Navigation