Skip to main content

Advertisement

Log in

An algorithm for direct birefringence measurements using intensities of digital photoelastic patterns of fibres

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this article, we present a novel algorithm for digital analysis of the photoelastic patterns to provide direct birefringence measurements of fibres based on photoelastic intensities distribution. The validity of the introduced mathematical scheme is confirmed by comparing the calculated birefringence profile to the profile measured using the two-beam Pluta polarising interference microscope. The proposed method is applied to patterns of high (and low) birefringence gradients. This algorithm, with the aid of the single-frame computed tomography, is used to measure the 3D birefringence profile of necking in polymeric fibres. Also, a dynamic study of the mechanical behaviour of polymeric fibres is given. Digital photoelastic and two-beam interference patterns are included for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Sardela, Practical materials characterization (Springer, 2014)

    Book  Google Scholar 

  2. R. Hufenus, F.A. Reifler, M.P. Fernández-Ronco, M. Heuberger, Molecular orientation in melt-spun poly (3-hydroxybutyrate) fibers: effect of additives, drawing and stress-annealing. Eur. Polymer J. 71, 12–26 (2015)

    Article  Google Scholar 

  3. M. Pluta, A double refracting interference microscope with continuously variable amount and direction of wavefront shear. Opt. Acta Int. J. Opt. 18(9), 661–675 (1971)

    Article  ADS  Google Scholar 

  4. U. Rössler, Solid state theory: an introduction (Springer Science & Business Media, 2009)

    Book  Google Scholar 

  5. V. Brcic, Photoelasticity in Theory and Practice: Course Held at the Department for Mechanics of Deformable Bodies September–October 1970, vol. 59 (Springer, 2014)

    Google Scholar 

  6. P. Klocek, Handbook of infrared optical materials (CRC Press, 2017)

    Book  Google Scholar 

  7. G.A. Maugin, Continuum mechanics of electromagnetic solids (Elsevier, 2013)

    MATH  Google Scholar 

  8. A.B. Sharma, S.J. Halme, M.M. Butusov, Optical fiber systems and their components: an introduction, vol. 24 (Springer, 2013)

    Google Scholar 

  9. K. Ramesh, T. Kasimayan, B. Neethi Simon, Digital photoelasticity—a comprehensive review. J. Strain Anal. Eng. Des. 46(4), 245–266 (2011)

    Article  Google Scholar 

  10. M. Solaguren-Beascoa Fernández, J. Alegre Calderón, P. Bravo Diez, I. Cuesta Segura, Stress-separation techniques in photoelasticity: a review. J. Strain Anal. Eng. Des. 45(1), 1–17 (2010)

    Article  Google Scholar 

  11. R. Weller, J. Bussey, Photoelastic analysis of three-dimensional stress systems using scattered light (National Advisory Committee for Aeronautics, 1939)

    Google Scholar 

  12. H. Aben, J. Anton, M. Õis, K. Viswanathan, S. Chandrasekar, M. Chaudhri, On the extraordinary strength of Prince Rupert’s drops. Appl. Phys. Lett. 109(23), 231903 (2016)

    Article  ADS  Google Scholar 

  13. S.A. Mukhamediev, A.N. Galybin, Determination of stresses from the stress trajectory pattern in a plane elastic domain. Math. Mech. Solids 12(1), 75–106 (2007)

    Article  MathSciNet  Google Scholar 

  14. A. Lagarde, Static and dynamic photoelasticity and caustics. International Centre for Mechanical Sciences. Vol. VI (Springer, Vienna, 2014)

    Google Scholar 

  15. M.M. Barak, A. Sharir, R. Shahar, Optical metrology methods for mechanical testing of whole bones. Vet. J. 180(1), 7–14 (2009)

    Article  Google Scholar 

  16. W. Primak, D.J.J.O.A.P. Post, Photoelastic constants of vitreous silica and its elastic coefficient of refractive index. J. Appl. Phys. 30(5), 779–788 (1959)

    Article  ADS  Google Scholar 

  17. G. Robertson, An intensity method for photoelastic birefringence measurements. Br. J. Appl. Phys. 16(2), 207 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  18. N. Barakat, A. Hamza, Interferometry of Fibrous Materials (Adam Hilger, Bristol, 1990). (Scientific Research Publishing (SCIRP) is one of the largest Open….)

    Google Scholar 

  19. T. Sokkar, H. El Dessouky, M. Shams-Eldin, M. El-Morsy, Automatic fringe analysis of two-beam interference patterns for measurement of refractive index and birefringence profiles of fibres. Opt. Lasers Eng. 45(3), 431–441 (2007)

    Article  Google Scholar 

  20. A. Hamza, T. Sokkar, K. El-Farahaty, M. Raslan, Reconstruction of refractive indices distribution in 3D using a single pattern of multiple-beam interference fringes for online investigation of necking phenomenon. Polym. Test. 29(8), 1031–1040 (2010)

    Article  Google Scholar 

  21. A. Hamza, T. Sokkar, K. El-Farahaty, M. Raslan, A novel double-image Fizeau system for accurate investigation of anisotropic polymer fibres. J. Microsc. 254(2), 84–94 (2014)

    Article  Google Scholar 

  22. T. Sokkar, K. El-Farahaty, W. Ramadan, H. Wahba, M. Raslan, A. Hamza, Nonray-tracing determination of the 3D refractive index profile of polymeric fibres using single-frame computed tomography and digital holographic interferometric technique. J. Microsc. 257(3), 208–216 (2015)

    Article  Google Scholar 

  23. F. Natterer, The mathematics of computerized tomography, SIAM classics in applied mathematics (Soc. Industrial and Appl. Math, Philadelphia, 2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Raslan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raslan, M.I., Sokkar, T.Z.N. & Hamza, A.A. An algorithm for direct birefringence measurements using intensities of digital photoelastic patterns of fibres. Appl. Phys. B 128, 5 (2022). https://doi.org/10.1007/s00340-021-07728-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07728-0

Navigation