Skip to main content
Log in

Dual-frequency unidirectional reflectionlessness in a non-Hermitian quantum system of two different energy-level quantum dots coupled to a plasmonic waveguide

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Dual-frequency unidirectional reflectionlessness is investigated in a quantum system consisting of a two-level and a V-type three-level quantum dots coupled to a plasmonic waveguide based on electromagnetically induced transparency-like effect. The results show that the dual-frequency unidirectional reflectionlessness can be obtained by appropriately adjusting the phase shift between two quantum dots, decay rates of quantum dots, and coupling strengths between quantum dots and plasmonic waveguide. Moreover, the dual-frequency low unidirectional reflection can be manipulated in the wide ranges of decay rates and coupling strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. C.M. Bender, Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D.N. Christodoulides, U. Peschel, Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)

    Article  ADS  Google Scholar 

  4. S. Longhi, PT-symmectric laser absorber. Phys. Rev. A 82, 031801 (2010)

    Article  ADS  Google Scholar 

  5. Y. Sun, W. Tan, H.Q. Li, J. Li, H. Chen, Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett. 112, 143903 (2014)

    Article  ADS  Google Scholar 

  6. A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M.V. Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    Article  ADS  Google Scholar 

  7. B. Peng, ṢK. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G.L. Long, S. Fan, F. Nori, C.M. Bender, L. Yang, Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014)

    Article  Google Scholar 

  8. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, D.N. Christodoulides, Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    Article  ADS  Google Scholar 

  9. L. Feng, Y.L. Xu, W.S. Fegadolli, M.H. Lu, J.E.B. Oliveira, V.R. Almeida, Y.F. Chen, A. Scherer, Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108 (2013)

    Article  ADS  Google Scholar 

  10. X. Gu, R. Bai, C. Zhang, X.R. Jin, Y.Q. Zhang, S. Zhang, Y.P. Lee, Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling. Opt. Express 25, 11778–11787 (2017)

    Article  ADS  Google Scholar 

  11. R. Bai, C. Zhang, X. Gu, X.R. Jin, Y.Q. Zhang, Y.P. Lee, Switching the unidirectional refectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling. Sci. Rep. 7, 10742 (2017)

    Article  ADS  Google Scholar 

  12. C. Zhang, R. Bai, X. Gu, X.R. Jin, Y.Q. Zhang, Y.P. Lee, Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling. Opt. Express 25, 24281–24289 (2017)

    Article  Google Scholar 

  13. Y. Huang, Y. Shen, C. Min, S. Fan, G. Veronis, Unidirectional reflectionless light propagation at exceptional points. Nanophotonics 6(5), 977–996 (2017)

    Article  Google Scholar 

  14. B. Peng, S.K. Özdemir, W. Chen, F. Nori, L. Yang, What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 5082 (2014)

    Article  ADS  Google Scholar 

  15. J.T. Shen, S. Fan, Coherent photon transport from spontaneous emission in one-dimensional waveguide. Opt. Lett. 30, 2001–2003 (2005)

    Article  ADS  Google Scholar 

  16. W. Chen, G.Y. Chen, Y.N. Chen, Coherent transport of nanowire surface plasmons coupled to quantum dots. Opt. Express 18, 10360–10368 (2010)

    Article  ADS  Google Scholar 

  17. W. Chen, G.Y. Chen, Y.N. Chen, Controlling Fano resonance of nanowire surface plasmons. Opt. Lett. 36, 3602–3604 (2011)

    Article  ADS  Google Scholar 

  18. G.Y. Chen, Y.N. Chen, Correspondence between entanglement and Fano resonance of surface plasmons. Opt. Lett. 37, 4023–4025 (2012)

    Article  ADS  Google Scholar 

  19. X.F. Zang, T. Zhou, B. Cai, Y.M. Zhu, Controlling single-photon transport properties in a waveguide coupled whith two separated atoms. J. Phys. B-At. Mol. Opt. 46, 145504 (2013)

    Article  ADS  Google Scholar 

  20. D.E. Chang, A.S. Sørensen, E.A. Demler, M.D. Lukin, A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007)

    Article  Google Scholar 

  21. J.T. Shen, S. Fan, Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79, 023837 (2009)

    Article  ADS  Google Scholar 

  22. J.T. Shen, S. Fan, Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom. Phys. Rev. A 79, 023838 (2009)

    Article  ADS  Google Scholar 

  23. G.Y. Chen, N. Lambert, C.H. Chou, Y.N. Chen, F. Nori, Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement. Phys. Rev. B 84, 045310 (2011)

    Article  ADS  Google Scholar 

  24. G.Y. Chen, C.M. Li, Y.N. Chen, Generating maximum entanglement under asymmetric couplings to surface plasmons. Opt. Lett. 37, 1337–1339 (2012)

    Article  ADS  Google Scholar 

  25. M.T. Cheng, Y.Y. Song, Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt. Lett. 37, 978–980 (2012)

    Article  ADS  Google Scholar 

  26. N.C. Kim, M.C. Ko, Switching of a single photon by two \(\Lambda\)-type three-level quantum dots embedded in cavities coupling to one-dimensional waveguide. Plasmonics 10, 605–610 (2015)

    Article  Google Scholar 

  27. N.C. Kim, M.C. Ko, S.I. Choe, C.J. Jang, G.J. Kim, Z.H. Hao, J.B. Li, Q.Q. Wang, Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon. arXiv:1708.06635

  28. N.C. Kim, M.C. Ko, C.I. Choe, Scattering of a single plasmon by two-level and V-type three-level quantum dot systems coupled to 1D waveguide. Plasmonics 10, 1447–1452 (2015)

    Article  Google Scholar 

  29. N.C. Kim, M.C. Ko, Q.Q. Wang, Single plasmon switching with n quantum dots system coupled to one-dimentional waveguide. Plasmonics 10, 611–615 (2014)

    Article  Google Scholar 

  30. N.C. Kim, M.C. Ko, S.I. Choe, J.B. Li, S.J. Im, Y.H. Ko, C.G. Jo, Q.Q. Wang, Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide. Nanotechnology 27, 465703 (2016)

    Article  ADS  Google Scholar 

  31. M.C. Ko, N.C. Kim, S.I. Choe, Z.H. Hao, L. Zhou, J.B. Li, I.G. Kim, Q.Q. Wang, Coherent controllable transport of a surface plasmon coupled to a plasmonic waveguide with a metal nanoparticle-semiconductor quantum dot hybrid system. Plasmonics 11, 1613–1619 (2016)

    Article  Google Scholar 

  32. P.C. Kuo, G.Y. Chen, Y.N. Chen, Scattering of nanowire surface plasmons coupled to quantum dots with azimuthal angle difference. Sci. Rep. 6, 37766 (2016)

    Article  ADS  Google Scholar 

  33. L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum supercavity with atomic mirrors. Phys. Rev. A 78, 063827 (2008)

    Article  ADS  Google Scholar 

  34. D.X. Qiu, X.Y. Zou, Y.M. Liu, H. Yang, L.X. Yu, Y.Q. Zhang, X.R. Jin, C.S. An, S. Zhang, Dual-band unidirectional reflectionless in non-Hermitian quantum system consisting of a gain and a loss plasmonic cavities. Quantum Inf. Process. 18, 269 (2019)

    Article  ADS  Google Scholar 

  35. D.X. Qiu, R. Bai, C. Zhang, L.F. Xin, X.Y. Zou, Y.Q. Zhang, X.R. Jin, C.S. An, S. Zhang, Unidirectional reflectionlessness in a non-Hermitian quantum system of surface plasmon coupled to two plasmonic cavities. Quantum Inf. Process. 18, 28 (2019)

    Article  ADS  Google Scholar 

  36. N. Wu, C. Zhang, X.R. Jin, Y.Q. Zhang, Y.P. Lee, Unidirectional reflectionless phenomena in non-Hermitian quantum system of quantum dots coupled to a plasmonic waveguide. Opt. Express 26, 3839–3849 (2018)

    Article  ADS  Google Scholar 

  37. J.J. Chen, C. Wang, C. Zhang, J.H. Xiao, Multiple plasmon-induced transparencies in coupled-resonator systems. Opt. Lett. 37, 5133–5135 (2012)

    Article  ADS  Google Scholar 

  38. X.R. Jin, Y.Q. Zhang, S. Zhang, Y.P. Lee, J.Y. Rhee, Polarization-independent electromagnetically induced transparency-like effects in stacked metamaterials based on Fabry-Perot resonance. J. Opt. 15, 125104 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12064045, 11864043, 11364044), the Science and Technology Research Project of Education Department of Jilin Province (JJKH20200509KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Ri Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X.Y., Qiu, DX., Yang, H. et al. Dual-frequency unidirectional reflectionlessness in a non-Hermitian quantum system of two different energy-level quantum dots coupled to a plasmonic waveguide. Appl. Phys. B 127, 159 (2021). https://doi.org/10.1007/s00340-021-07708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07708-4

Navigation